Journal of Population Research

, Volume 24, Issue 1, pp 119–131 | Cite as

Future life expectancy in Australia, Europe, Japan and North America

Research Note


Human life expectancy has risen in most developed countries over the last century, causing the observed demographic shifts. Babel, Bomsdorf and Schmidt (forthcoming) introduce a stochastic mortality model using panel data procedures which distinguishes between a common time effect and a common age effect of mortality evolvement. Using this mortality model, the present paper provides forecasts of future life expectancy for 17 countries divided into 12 regions: Australia, Alps, Bene, Canada, England and Wales, France, Germany, Italy, Japan, Spain, Scandinavia and the United States of America. We consider (traditional) period life expectancies as well as cohort life expectancies, the latter being a more realistic approach but less common. It turns out that a continuing increase of life expectancy is expected in all considered countries. Further, we show that the probabilistic uncertainty of forecast life expectancies is different if either period life expectancies or cohort life expectancies are considered and, moreover, the uncertainty increases substantially if the error of parameter estimation is included.


life expectancy life table stochastic mortality forecasts cohort analysis period analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Babel, B., E. Bomsdorf and R. Schmidt. Forthcoming. Forecasting German mortality via panel data procedures.Journal of Population Economics. Published online at Online First <>.Google Scholar
  2. Baltagi, B.H. 2005.Econometric Analysis of Panel Data. Third Edition. Chichester: John Wiley and Sons.Google Scholar
  3. Bomsdorf, E. 2002.Neue Generationensterbetafeln für die Geburtsjahrgänge 1933–2003. Cologne: Josef Eul Verlag.Google Scholar
  4. Bomsdorf, E. 2004. Life expectancy in Germany until 2050.Experimental Gerontology 39(2): 159–163.CrossRefGoogle Scholar
  5. Bomsdorf, E. and M. Trimborn. 1992. Sterbetafel 2000. Modellrechnung der Sterbetafel.Zeitschrift für die gesamte Versicherungswissenschaft 81: 457–485.Google Scholar
  6. Booth, H. 2006. Demographic forecasting: 1980–2005 in review.International Journal of Forecasting 22(3): 547–581.CrossRefGoogle Scholar
  7. Booth, H., R. Hyndman, L. Tickle and P. De Jong. 2006. Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions.Demographic Research 15(9): 289–310.CrossRefGoogle Scholar
  8. Booth, H., J. Maindonald and L. Smith. 2002. Applying Lee-Carter under conditions of variable mortality decline.Population Studies 56(3): 325–336.CrossRefGoogle Scholar
  9. Booth, H. and L. Tickle. 2004. Beyond three score years and ten: prospects for longevity in Australia.People and Place 12(1): 15–27.Google Scholar
  10. Booth, H., L. Tickle and L. Smith. 2005. Evaluation of the variants of the Lee-Carter method of forecasting mortality: a multi-country comparison.New Zealand Population Review 31(1): 13–34.Google Scholar
  11. Canudas-Romo, V. and R. Schoen. 2005. Age-specific contributions to changes in the period and cohort life expectancy.Demographic Research 13(3): 63–82.CrossRefGoogle Scholar
  12. Deutsche Aktuarvereinigung. 2004.Herleitung der DAV-Sterbetafel 2004 R für Rentenversicherungen. Internal Report.Google Scholar
  13. Goldstein, J.R. and K.W. Wachter. 2006 Relationships between period and cohort life expectancy: gaps and lags.Population Studies 60(3): 257–269.CrossRefGoogle Scholar
  14. Lee, R.D. 2000. The Lee-Carter method for forecasting mortality, with various extensions and applications.North American Actuarial Journal 4(1): 80–93.Google Scholar
  15. Lee, R.D. and L.R. Carter. 1992. Modeling and forecasting US mortality.Journal of the American Statistical Association 87(419): 659–671.CrossRefGoogle Scholar
  16. Li, S.H. and W.S. Chan. 2005. Outlier analysis and mortality forecasting: the United Kingdom and Scandinavian countries.Scandinavian Actuarial Journal 3: 187–211.CrossRefGoogle Scholar
  17. Oeppen, J. and J.W. Vaupel. 2002. Broken limits to life expectancy.Science 296(5570): 1029–1031.CrossRefGoogle Scholar
  18. Pitacco, E. 2004. Survival models in a dynamic context: a survey.Insurance: Mathematics and Economics 35(2): 279–298.CrossRefGoogle Scholar
  19. Riphahn, R.T. and K.F. Zimmermann. 2000. The mortality crisis in East Germany. Pp. 227–252 in G.A. Cornia and R. Paniccià (eds),The Mortality Crisis in Transitional Economies. Oxford: Oxford University Press.Google Scholar
  20. Rogers, L.C.G. and D. Williams. 1994.Diffusions, Markov Processes, and Martingales, Volume 1:Foundations. 2nd Edition. Chichester: John Wiley and Sons.Google Scholar
  21. Statistisches Bundesamt. 2003.Bevölkerung Deutschlands bis 2050. Wiesbaden.Google Scholar
  22. Thatcher, A.R., V. Kannisto and J.W. Vaupel. 1998. The force of mortality at ages 80 to 120.Odense Monographs on Population Aging No. 5. Odense: Odense University Press.Google Scholar
  23. Tuljapurkar, S. and C. Boe. 1999. Mortality change and forecasting: how much and how little do we know?North American Actuarial Journal 2(4): 13–47.Google Scholar
  24. Tuljapurkar, S., N. Li and C. Boe. 2000. A universal pattern of mortality decline in the G7 countries.Nature 405(6788):789–792.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media 2007

Authors and Affiliations

  • Bernhard Babel
    • 1
  • Eckart Bomsdorf
    • 1
  • Rafael Schmidt
    • 1
  1. 1.Department of Economic and Social StatisticsUniversity of CologneCologneGermany

Personalised recommendations