Advertisement

aequationes mathematicae

, Volume 18, Issue 1–2, pp 370–388 | Cite as

On general dissections of a polygon

  • Ronald C. Read
Research Papers

Keywords

Dihedral Group Rooted Cluster Double Series Perpendicular Bisector Cycle Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    BEINEKE, L. W. and PIPPERT, R. C.,Recent advances in graph theory. Proc. Second Czecho-slovak Symposium, Prague 1974, 441-454. Academia, Prague 1975.Google Scholar
  2. [2]
    Beineke, L. W. andPippert, R. E.,On the enumeration of planar trees of hexagons. Glasgow Math. J.15 (1974), 131–147.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Brown, W. G.,Historical note on a recurrent combinatorial problem. Amer. Math. Monthly72 (1965), 973–977.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Comtet, L.,Analyse Combinatoire. Paris, Presses Universitaires de France, 1970, Volume 1.Google Scholar
  5. [5]
    Guy, R. K.,Dissecting a polygon into triangles. Bull. Malayan Math. Soc.5 (1968), 57–60.Google Scholar
  6. [6]
    Harary, F. andTutte, W. T.,The number plane trees with a given partition. Mathematika11 (1964), 99–101.zbMATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    Harary, F.,Graph Theory. Addison Wesley, Reading, Massachusetts, 1969.Google Scholar
  8. [8]
    Harary, F. andPalmer, E. M.,Graphical Enumeration. Academic Press, New York 1973.zbMATHGoogle Scholar
  9. [9]
    Harary, F., Palmer, E. M. andRead, R. C.,On the cell-growth problem for arbitrary polygons. Discrete Math.11 (1975), 371–389.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Klarner, D.,Cell growth problems. Canad. J. Math.19 (1967), 851–863.zbMATHMathSciNetGoogle Scholar
  11. [11]
    Motzkin, T.,Relations between hyper-surface cross-ratios and a combinatorial formula for partitions of a polygon for permanent preponderance and for non-associative products. Bull. Amer. Math. Soc.54 (1948), 352–360.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Polya, G.,Kombinatorische Anzahbestimmungen für Gruppen, Graphen und chemische Verbin-dungen. Acta Math.68 (1937), 142–245.CrossRefGoogle Scholar
  13. [13]
    Polya, G. andCarlitz, L.,Anfgabe 305 (Solution). Elem. Math.14 (1959), 14–16.Google Scholar
  14. [14]
    Read, R. C.,Contributions to the cell growth problem. Canad. J. Math.14 (1962), 1–20.zbMATHMathSciNetGoogle Scholar
  15. [15]
    Riordan, J.,Combinatorial Identities. J. Wiley & Sons, New York, 1968.zbMATHGoogle Scholar
  16. [16]
    Sloane, N. J. A.,Handbook of Integer Sequences. Academic Press, New York, 1973.zbMATHGoogle Scholar
  17. [17]
    Stanley, R.,Solutions of Problem E2315. Amer. Math. Monthly79 (1972), 908–910.CrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser-Verlag 1978

Authors and Affiliations

  • Ronald C. Read
    • 1
  1. 1.Department of Combinatorics & OptimizationUniversity of WaterlooWaterloo, OntarioCanada

Personalised recommendations