Journal of Plant Biology

, Volume 48, Issue 4, pp 456–466 | Cite as

Altered physiology in trehalose-producing transgenic tobacco plants: Enhanced tolerance to drought and salinity stresses

  • Sung-Soo Jun
  • Jin Young Yang
  • Hye Jin Choi
  • Na-Ryung Kim
  • Min Chul Park
  • Young-Nam Hong


Transgenic tobaccoNicotiana tabacum L. var. SR1) plants that over-express theEscherichia coli trehalose-6-phosphate synthase (TPS) gene(otsA) synthesized small amounts of trehalose (<400 µg g-1 leaf) while non-transformants produced no detectable trehalose. Some transgenic plants expressing a high level ofotsA exhibited stunted growth and morphologically altered leaves. We tested F22 homozygous plants devoid of phenotypic changes to determine their physiological responses to dehydration and salinity stresses. All transgenic plants maintained better leaf turgidity under a limited water supply or after treatment with polyethylene glycol (PEG). Furthermore, fresh weight was maintained at higher levels after either treatment. The initial leaf water potential was higher in transgenic plants than non-transformants, but, in both plant types, was decreased to a comparable degree following dehydration. When grown with 250 mM NaCl, transgenic plants exhibited a significant delay in leaf withering and chlorosis, as well as more efficient seed germination. Our results suggest that either trehalose or trehalose-6-phosphate can act as an osmoprotective molecule without maintaining water potential, in contrast to other osmolytes. Furthermore, both appear to protect young embryos under unfavorable water status to ensure subsequent germination.


dehydration salinity stress tolerance transgenic tobacco trehalose 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Argüelles JC (2000) Physiological roles of trehalose in bacteria and yeasts: A comparative analysis. Arch Microbiol17: 217–224Google Scholar
  2. Bianchi G, Gamba A, Limiroli R, Pozzi N, Elster R, Salamini F, Bartels D (1993) The unusual sugar composition in leaves of the resurrection plantMyrothamnus flabellifolius. Physiol Plant87: 223–226CrossRefGoogle Scholar
  3. Blàzquez MA, Santos E, Flores CL, Martinez-Zapater JM, Salinas J, Gancedo C (1998) Isolation and molecular characterization of theArabidopsis TPS1 gene, encoding trehalose-6-phosphate synthase. Plant J13: 685–689PubMedCrossRefGoogle Scholar
  4. BoyerJS, Bowen BL (1970) Inhibition of oxygen evolution in chloroplasts isolated from leaves with low water potentials. Plant Physiol45: 612–615PubMedCrossRefGoogle Scholar
  5. Boyer JS, Knipling EB (1965) Isopiestic technique for measuring leaf water potentials with a thermocouple psychrometer. Pro Natl Acad Sci USA54: 1044–1051CrossRefGoogle Scholar
  6. Cabib E, Leloir LF (1958) The biosynthesis of trehalose-6-phosphate. J Biol Chem231: 259–275PubMedGoogle Scholar
  7. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem162: 156–159PubMedCrossRefGoogle Scholar
  8. Crowe JH, Carpenter JF, Crowe LM (1998) The role of vitrification in anhydrobiosis. Annu Rev Physiol60: 73–103PubMedCrossRefGoogle Scholar
  9. Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: The role of trehalose. Science223: 701–703PubMedCrossRefGoogle Scholar
  10. Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol54: 579–599PubMedCrossRefGoogle Scholar
  11. de Virgilio C, Hottiger T, Dominguez J, Boiler T, Wiemken A (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. Eur J Biochem219: 179–186PubMedCrossRefGoogle Scholar
  12. Drennan PM, Smith MT, Goldsworthy D, van Staden J (1993) The occurrence of trehalose in the leaves of the desiccation-tolerant angiospermMyrothamnus flabellifolius Wiw. J Plant Physiol142: 493–496Google Scholar
  13. Elbein AD (1974) The metabolism of α,α-trehalose. Adv Carbohyd Chem Biochem30: 227–256CrossRefGoogle Scholar
  14. Garg AK, Kim J-K, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA99: 15898–15903PubMedCrossRefGoogle Scholar
  15. Giaever HM, Styrvold OB, Kaasen I, Strøm AR (1988) Biochemical and genetic characterization of osmoregulatory trehalose synthesis inEscherichia coli. J Bacteriol170: 2841–2849PubMedGoogle Scholar
  16. Goddijn OJM, Smeekens S (1998) Sensing trehalose biosynthesis in plants. Plant J14: 143–146PubMedCrossRefGoogle Scholar
  17. Goddijn OJM, Verwoerd TC, Voogd E, Krutwagen R, de Graaf P, Poels J, van Dun K, Ponstein A, Damm B, Pen J (1997) Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiol113: 181–190PubMedCrossRefGoogle Scholar
  18. Guo N, Puhlev I, Brown DR, Mansbridge J, Levine F (2000) Trehalose expression confers desiccation tolerance on human cells. Nature Biotechnol18: 168–171CrossRefGoogle Scholar
  19. Hayashi H, Alia, Mustardy L, Deshnium P, Ida M, Murata N (1997) Transformation ofArabidopsis thaliana with thecodA gene for choline oxidase: Accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J12: 133–142PubMedCrossRefGoogle Scholar
  20. Holmström KO, Mantyla E, Welin B, Palva ET (1996) Drought tolerance in tobacco. Nature279: 683–684CrossRefGoogle Scholar
  21. Horsch RB, Fry J, Hoffmann NL, Wallroth M, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science223: 496–498CrossRefGoogle Scholar
  22. Iwahashi H, Obuchi K, Fujii S, Komatsu Y (1995) The correlative evidence suggesting that trehalose stabilizes membrane structure in the yeastSaccharomyces cerevisiae. Cell Mol Biol41: 763–769PubMedGoogle Scholar
  23. Jang I-C, Oh S-J, Seo J-S, Choi W-B, Song SI, Kim CH, Kim YS, Seo H-S, Choi YD, Nahm BH, Kim J-K (2003) Expression of a bifunctional fusion of theEscherichia coli genes for trehalose-6-phosphate synthase and tre-halose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol131: 516–524PubMedCrossRefGoogle Scholar
  24. Jun S-S, Choi HJ, Yang JY, Hong Y-N (2001) Photosynthetic response to dehydration and high temperature in treha-lose-producing transgenic tobacco. 12th International Congress on Photosynthesis. CSIRO Publishing, QueenslandGoogle Scholar
  25. Kaasen I, Falkenberg P, Styrvold OB, Strøm AR (1992) Molecular cloning and physical mapping of theotsBA genes, which encode the osmoregulatory trehalose pathway ofEscherichia coli: Evidence that transcription is activated byKatF (AppR). J Bacteriol174: 889–898PubMedGoogle Scholar
  26. Kishor PBK, Hong Z, Miao G-H, Hu C-AA, Verma DPS (1995) Overexpression of δ1 pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol108: 1387–1394PubMedGoogle Scholar
  27. Larsen PI, Sydnes LK, Landfald B, Strøm AR (1987) Osmoregulation inEscherichia coli by accumulation of organic osmolytes: Betaines, glutamic acid, and trehalose. Arch Microbiol147: 1–7PubMedCrossRefGoogle Scholar
  28. Lee HY, Jun S-S, Hong Y-N (1998) Photosynthetic responses to dehydration in green pepper (Capsicum annuum L.) leaves. J Photosci5: 169–174Google Scholar
  29. Michel BE (1970) Carbowax 6000 compared with mannitol as a suppressant of cucumber hypocotyl elongation. Plant Physiol45: 507–509PubMedCrossRefGoogle Scholar
  30. Mohanty P, Boyer JS (1976) Chloroplast response to low water potentials. IV. Quantum yield is reduced. Plant Physiol57: 704–709PubMedCrossRefGoogle Scholar
  31. Müller J, Boiler T, Wiemken A (1995) Trehalose and trehalase in plants: Recent developments. Plant Sci12: 1–9CrossRefGoogle Scholar
  32. Müller J, Wiemken A, Aeschbacher R (1999) Trehalose metabolism in sugar sensing and plant development. Plant Sci147: 37–47CrossRefGoogle Scholar
  33. Pilon-Smits EAH, Ebskamp MJM, Paul MJ, Jeuken MJW, Weisbeek PJ, Smeekens SCM (1995) Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol107: 125–130PubMedGoogle Scholar
  34. Pilon-Smits EAH, Terry N, Sears T, Kim H, Zayes A, Hwang SB, van Dun K, Voogd E, Verwoerd TC, Krut-wagen RWHH, Coddijn OJM (1998) Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress. J Plant Physiol152: 525–532Google Scholar
  35. Renger G, Schreiber U (1986) Practical applications of fluorometric methods to algae and higher plant research,In Govindjee, J Amesz, DC Fork, eds, Light Emission by Plants and Bacteria. Academic Press, Orlando/London, pp 587–619Google Scholar
  36. Romero C, Bellés JM, VayáJL, Serrano R, Culiáñez-Macià FA (1997) Expression of the yeasttrehalose-6-phosphate synthase gene in transgenic tobacco plants: Pleiotropic phenotypes include drought tolerance. Planta201: 293–297CrossRefGoogle Scholar
  37. Schluepmann H, Pellny T, van Dijken A, Aghdasi M, Wobbes B, Paul M, Smeekens S (2004) Trehalose mediated growth inhibition ofArabidopsis seedlings is due to trehalose-6-phosphate accumulation. Plant Physiol135: 879–890PubMedCrossRefGoogle Scholar
  38. Schluepmann H, Pellny T, van Dijken A, Smeekens S, Paul M (2003) Trehalose-6-phosphate is indispensable for carbohydrate utilization and growth inArabidopsis thaliana. Proc Natl Acad Sci USA100: 6849–6854PubMedCrossRefGoogle Scholar
  39. Serrano R (1996) Salt tolerance in plants and microorganism: Toxicity targets and defense responses. Intl Rev Cytol165: 1–5CrossRefGoogle Scholar
  40. Singer MA, Lindquist S (1998) Multiple effects of trehalose on protein foldingin vitro andin vivo. Mol Cell1: 639–648PubMedCrossRefGoogle Scholar
  41. Strom AR, Kaasen I (1993) Trehalose metabolism inEscherichia coli: Stress protection and stress regulation of gene expression. Mol Microbiol8: 205–210PubMedCrossRefGoogle Scholar
  42. Tarczynski MC, Jensen RG, Bohnert HJ (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science259: 508–510PubMedCrossRefGoogle Scholar
  43. Thevelein JM (1984) Regulation of trehalose mobilization in fungi. Microbiol Rev48: 42–59PubMedGoogle Scholar
  44. Vogel G, Aeschbacher RA, Müller J, Boiler T, Wiemken A (1998) Trehalose-6-phosphate phosphatase fromArabidopsis thaliana: Identification by functional complementation of the yeast tps2 mutant. Plant J13: 673–683PubMedCrossRefGoogle Scholar
  45. Vogel G, Fiehn O, Jean-Richard-dit-Bressel L, Boiler T, Wiemken A, Aeschbacher RA, Wingler A (2001) Trehalose metabolism inArabidopsis: Occurrence of trehalose and molecular cloning and characterization of trehalose-6-phosphate synthase homologues. J Exp Bot52: 1817–1826PubMedCrossRefGoogle Scholar
  46. Zentella R, Mascorro-Gallardo JO, van Dijck P, Folch-Mallol J, Bonini B, van Vaeck C, Gaxiola R, Covarrubias AA, Nieto-Sotelo J, Thevelein JM, Iturriaga G (1999) ASelaginella lepidophylla trehalose-6-phos-phate synthase complements growth and stress-tolerance defects in a yeasttps1 mutant. Plant Physiol119: 1437–1482CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Korea 2005

Authors and Affiliations

  • Sung-Soo Jun
    • 1
    • 2
  • Jin Young Yang
    • 1
  • Hye Jin Choi
    • 1
  • Na-Ryung Kim
    • 3
  • Min Chul Park
    • 3
  • Young-Nam Hong
    • 1
  1. 1.School of Biological SciencesSeoul National UniversitySeoulKorea
  2. 2.School of General Education, Institute for Scientifically Able YouthKyungwon UniversitySeoungnamKorea
  3. 3.Department of Life ScienceThe Catholic University of KoreaPuchonKorea

Personalised recommendations