, Volume 33, Issue 2, pp 113–120 | Cite as

Ovipositor length of threeApocrypta species: Effect on oviposition behavior and correlation with syconial thickness

  • Wen-Quan Zhen
  • Da-Wei Huang
  • Jin-Hua Xiao
  • Da-Rong Yang
  • Chao-Dong Zhu
  • Hui Xiao


We investigated oviposition behavior in three non-pollinating fig wasps: the sympatric speciesApocrypta bakeri Joseph onFicus hispida L.,A. westwoodi Grandi onF. racemosa L., andApocrypta sp. onF. semicordata Buch.-Ham. The oviposition behavior differs significantly between one pair of species (A. bakeri andA. westwoodi) and the other species (Apocrypta sp. onF. semicordata).A. bakeri andA. westwoodi were similar in the following aspects: the posture of the abdomen and the action of the hind legs before penetration, and the bending ovipositor sheath during penetration. In contrast, the oviposition behavior ofApocrypta sp. is quite different. This difference can be explained by the significant correlation between ovipositor length and syconial thickness.Apocrypta sp. has a shorter ovipositor than the two other species, which correlates with the thinner syconial wall of its host figF. semicordata. It is deduced that the ovipositor length adapts to the syconial thickness and induces the oviposition behavior in the different species to diverge. For all threeApocrypta species, the midleg length and hindleg length are significantly correlated with their ovipositor lengths. This may be explained as due to the fact that body movement adjusting the hindlegs and midlegs up and down, or forward and backward, is also influenced by the ovipositor length.

Key Words

Oviposition behavior adaptation Apocrypta non-pollinating fig wasp 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdurahiman, U.C. (1980) Observations on the oviposition behaviour inPhilotrypesis pilosa Mayr (Torymidae: Hymenoptera).Proc. Symp. Environmental Biology (Trivandrum, India), pp. 146–150.Google Scholar
  2. 2.
    Abdurahiman, U.C. and Joseph, K.J. (1979) Observation on the oviposition behaviour inApocrypta bakeri Joseph (Torymidae: Hymenoptera).J. Bombay Nat. Hist. Soc. 76: 219–223.Google Scholar
  3. 3.
    Ansari, M.H. (1967) The process of egg laying in Idarninae (Chalcidoidea: Hymenoptera).Indian J. Entomol. 29: 380–384.Google Scholar
  4. 4.
    Compton, S.G. and McLaren, F.A.C. (1989) Respiratory adaptations in some male fig wasps.Proc. K. Ned. Akad. Wet 92: 57–71.Google Scholar
  5. 5.
    Galil, J. and Eisikowitch, D. (1968) On the pollination ecology ofFicus sycomorus in East Africa.Ecology 49: 259–269.CrossRefGoogle Scholar
  6. 6.
    Galil, J. and Meiri, L. (1981) Number and structure of anthers in fig syconia in relation to behaviour of the pollen vectors.New Phytol. 88: 83–87.Google Scholar
  7. 7.
    Jousselin, E. and Kjellberg, F. (2001) The functional implications of active and passive pollination in dioecious figs.Ecol. Lett. 4: 151–158.CrossRefGoogle Scholar
  8. 8.
    Kerdelhue, C. and Rasplus, J.-Y. (1996) Non-pollinating Afrotropical fig wasps affect the fig-pollinator mutualism inFicus within the subgenusSycomorus.Oikos 75: 3–14.CrossRefGoogle Scholar
  9. 9.
    Machado, C.A., Jousselin, E., Kjellberg, F., Compton, S.G. and Herre, E.A. (2001) Phylogenetic relationships, historical biogeography and character evolution of fig-pollinating wasps.Proc. R. Soc. Lond. B. Biol. Sci. 268: 685–694.CrossRefGoogle Scholar
  10. 10.
    Molbo, D., Machado, C.A., Sevenster, J.G., Keller, L. and Herre, E.A. (2003) Cryptic species of figpollinating wasps: implications for the evolution of the fig-wasp mutualism, sex allocation, and precision of adaptation.Proc. Nat. Acad. Sci. U.S.A. 100: 5867–5872.CrossRefGoogle Scholar
  11. 11.
    Ramirez, B.W. (1974) Coevolution ofFicus and Agaonidae.Ann. Mo. Bot. Gard. 61: 770–780.CrossRefGoogle Scholar
  12. 12.
    SAS (1992) SAS User’s Guide. SAS Institute Inc., Cary, NC, USA.Google Scholar
  13. 13.
    Ulenberg, S.A. (1985) The Systematics of the Fig Wasp Parasites of the GenusApocrypta Coquerel. North-Holland Publishing Company, Amsterdam, the Netherlands.Google Scholar
  14. 14.
    van Noort, S. and Compton, S.G. (1996) Convergent evolution of agaonine and sycoecine (Agaonidae, Chalcidoidea) head shape in response to the constraints of host fig morphology.J. Biogeogr. 23: 415–424.CrossRefGoogle Scholar
  15. 15.
    Weiblen, G.D. (2002) How to be a fig wasp.Annu. Rev. Entomol. 47: 299–330.PubMedCrossRefGoogle Scholar
  16. 16.
    Weiblen, G.D. (2004) Correlated evolution in fig pollination.Syst. Biol. 53: 128–139.PubMedCrossRefGoogle Scholar
  17. 17.
    West, S.A., Herre, E.A., Windsor, D.M. and Green, P.R.S. (1996) The ecology and evolution of the New World non-pollinating fig wasp communities.J. Biogeogr. 23: 447–458.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2005

Authors and Affiliations

  • Wen-Quan Zhen
    • 1
    • 2
    • 3
  • Da-Wei Huang
    • 1
    • 4
  • Jin-Hua Xiao
    • 1
    • 3
  • Da-Rong Yang
    • 2
  • Chao-Dong Zhu
    • 1
  • Hui Xiao
    • 1
  1. 1.Institute of ZoologyChinese Academy of SciencesBeijingChina
  2. 2.Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesYunnanChina
  3. 3.Graduate School of the Chinese Academy of SciencesBeijingChina
  4. 4.Plant Protection CollegeShandong Agricultural UniversityShandongChina

Personalised recommendations