Advertisement

The Mathematical Intelligencer

, Volume 2, Issue 4, pp 200–203 | Cite as

Arnold shapiro’s eversion of the sphere

  • George K. Francis
  • Bernard Morin
Article

Keywords

Morin Double Cover Donut Real Projective Plane Embed Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Boy, Über die Curvatura integra u. d. Topologie geschlossener Flächen, Inaugural-Dissertation, U. Göttingen, 1901.Google Scholar
  2. 2.
    W. Boy, Über die Curvatura integra und die Topologie geschlossener Flächen, Math. Ann. 57 (1903), p. 151–184.CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    G. Francis, Some equivariant eversions of the sphere, privately circulated manuscript, July 1977.Google Scholar
  4. 4.
    G. Francis, Drawing surfaces and their deformations: the tobaccopouch eversions of the sphere, to appear, Int. J. Math. Mod.Google Scholar
  5. 5.
    N. Kuiper, Convex immersions of closed surfaces inE 3, Comm. Helv. 35 (1961), p. 85–92.CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    N. Max, Turning a sphere inside out, Intern. Film Bureau, Chicago, 1977.Google Scholar
  7. 7.
    B. Morin, Equations du retournement de la sphère, C. R. Acad. Sc. Paris, 287 (13 Novembre 1978), p. 879–882.MATHMathSciNetGoogle Scholar
  8. 8.
    B. Morin and J. Petit, Problématique du retournement de la sphère, C. R. Acad. Sci. Paris, 287 (23 Octobre 1978), p. 767–770.MATHMathSciNetGoogle Scholar
  9. 9.
    B. Morin and J. Petit, Le retournement de la sphère, C. R. Acad. Sci. Paris, 287 (30 Octobre 1978), p. 791–794.MATHMathSciNetGoogle Scholar
  10. 10.
    B. Morin and J. Petit, Le retournement de la sphère, Pour la Science, 15 (Janvier 1979), p. 34–49.Google Scholar
  11. 11.
    A. Phillips, Turning a surface inside out, Sci. Amer. 214, 5 (1966), p. 112–120.CrossRefGoogle Scholar
  12. 12.
    S. Smale, A classification of immersions of the two-sphere, Trans. Amer. Math. Soc. 90 (1959), p. 281–290.CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    H. Whitney, On regular closed curves in the plane, Compositio Math. 4 (1937), p. 276–284.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1980

Authors and Affiliations

  • George K. Francis
    • 1
  • Bernard Morin
    • 2
  1. 1.Department of MathematicsUniversity of IllinoisUrbanaUSA
  2. 2.Département de MathématiqueUniversité Louis-Pasteur 7StrasbourgFrance

Personalised recommendations