The Mathematical Intelligencer

, Volume 2, Issue 4, pp 165–171 | Cite as

Monsters and Moonshine

  • J. H. Conway


Conjugacy Class Simple Group Modular Function Irreducible Character Character Table 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. H. Conway, “A perfect group of order 8,315,533,613,086, 720,000 and the sporadic simple groups”, Proc. Nat. Acad. Sci. USA61 (1968), 398–400.CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    J. H. Conway and S. P. Norton, “Monstrous moonshine”, Bull. London Math. Soc.11 (1979), 308–339.CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    G. J. Jacobi, “Fundamenta nova theoriae functionum ellipticarum”, Bornträger, 1829.Google Scholar
  4. 4.
    E. L. Mathieu, “Mémoire sur l’étude des fonctions de plusieurs quantités, sur la mani‘re de les former et sur les substitutions qui les laissent invariables”, J. de Math.6 (1861), 241 ff.Google Scholar
  5. 5.
    E. L. Mathieu, “Sur la fonction cinq fois transitive de 24 quantités”, J. de Math.18 (1873), 25 ff.zbMATHGoogle Scholar
  6. 6.
    J. G. Thompson, “Some numerology between the Fischer- Griess monster and the elliptic modular function”, Bull. London Math. Soc.11 (1979), 352–353.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1980

Authors and Affiliations

  • J. H. Conway
    • 1
  1. 1.Department of Pure Mathematics and Mathematical StatisticsUniversity of CambridgeCambridgeEngland

Personalised recommendations