The Mathematical Intelligencer

, Volume 10, Issue 2, pp 37–47 | Cite as

Crabgrass, measles, and gypsy moths: An introduction to interacting particle systems

  • Richard Durrett


Measle Gypsy Moth Contact Process Occupied Site Interact Particle System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M. Bramson, R. Durrett, and G. Swindle, (198?). Asymptotics for the contact process when the range goes to α.Google Scholar
  2. J. T. Cox and R. Durrett, (1981). Some limit theorems for percolation processes with necessary and sufficient conditions.Ann. Prob. 9, 583–603.CrossRefzbMATHMathSciNetGoogle Scholar
  3. J. T. Cox and R. Durrett, (198?). Limit theorems for the spread of epidemics and forest fires.Google Scholar
  4. R. Durrett, (1984). Oriented percolation in two dimensions.Ann. Prob. 12, 999–1040.CrossRefzbMATHMathSciNetGoogle Scholar
  5. R. Durrett, (1985).Particle systems, random media, and large deviations. AMS Contemporary Mathematics, Vol. 41.Google Scholar
  6. R. Durrett and D. Griffeath, (1982). Contact processes in several dimensions.Z. für Wahr. 59, 535–552.CrossRefzbMATHMathSciNetGoogle Scholar
  7. R. Durrett and R. H. Schonmann, (1987). Stochastic growth models. InPercolation Theory and Ergodic Theory of Interacting Particle Systems. IMA Volumes in Math Appl., Vol. 8, Springer-Verlag, New York.Google Scholar
  8. H. Kesten, (1982).Percolation Theory for Mathematicians. Birkhäuser, Boston.Google Scholar
  9. T. Liggett, (1985).Interacting Particle Systems. Springer-Verlag, New York.CrossRefzbMATHGoogle Scholar
  10. D. Richardson, (1973). Random growth in a tesselation.Proc. Camb. Phil. Soc. 74, 515–528.CrossRefzbMATHGoogle Scholar
  11. P. Tautu, (1986).Stochastic Spatial Processes. Lecture Notes in Math, Vol. 1212, Springer-Verlag, New York.Google Scholar

Copyright information

© Springer Science+Business Media, Inc 1988

Authors and Affiliations

  • Richard Durrett
    • 1
  1. 1.Department of MathematicsCornell UniversityIthacaUSA

Personalised recommendations