The Mathematical Intelligencer

, Volume 10, Issue 2, pp 29–35 | Cite as

Group extensions for 45 years

  • Saunders Mac Lane
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cartan, H. Sur les groupes d’Eilenberg-Mac Lane I, II,Proc. Nat. Acad. Soc. USA 40 (1954), 467–471, 704-707.CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Eilenberg, S., and S. Mac Lane. Group extensions and homology,Ann. of Math. 43 (1942), 757–831.CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Eilenberg, S., and S. Mac Lane.Collected Papers, Academic Press, 1985.Google Scholar
  4. 4.
    Hasse, H., R. Brauer, and E. Noether. Beweis eines Hauptsatzes in der Theorie des Algebren,J. Reine Angew. Math 167 (1932), 399–404.Google Scholar
  5. 5.
    Hopf, H. Relations between the fundamental group and the second Betti Group.Lectures in Topology, Ann Arbor: University of Michigan Press (1941), 315–316.Google Scholar
  6. 6.
    Hopf, H. Fundamentalgruppe und zweite Bettische Gruppe.Comment. Math. Helv. 14 (1942), 257–309.CrossRefMathSciNetGoogle Scholar
  7. 7.
    Loday, J. L. Spaces with finitely many non-trivial homotopy groups,J. Pure Appl. Alg. 24 (1982), 179–202.CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    MacLane, S.Homology. Heidelberg and New York: Springer-Verlag (1963).CrossRefMATHGoogle Scholar
  9. 9.
    MacLane, S. Origins of the cohomology of groups,Enseign. Math. (2) 24 (1978), 1–29.MathSciNetGoogle Scholar
  10. 10.
    MacLane, S. Spectral complications in cohomology,Contemporary Mathematics 33 (1984), 11–23.CrossRefMathSciNetGoogle Scholar
  11. 11.
    MacLane, S. Applications of categorical algebra,Russian Math Surveys 40 (1985), 73–80.CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    MacLane, S. Topology becomes algebraic with Vietoris and Noether,J. Pure App. Alg. 39 (1986), 305–307.CrossRefMathSciNetGoogle Scholar
  13. 13.
    MacLane, S.Mathematics, Form and Function, New York: Springer-Verlag (1985).Google Scholar
  14. 14.
    MacLane, S., and O. F. G. Schilling. Normal algebraic number fields,Trans. Amer. Math. Soc. 50 (1941), 295–389.CrossRefMathSciNetGoogle Scholar
  15. 15.
    Mac Lane, S., and J. H. C. Whitehead. On the 3-type of a complex,Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 41–48.CrossRefMathSciNetGoogle Scholar
  16. 16.
    Milgram, R. J. The Bar construction and Abelian H spaces,III. J. Math. 11 (1967), 242–250.MATHMathSciNetGoogle Scholar
  17. 17.
    Miller, Haynes. The Sullivan conjecture on maps from classifying spaces,Ann. of Math. (2) 120 (1984), 39–87.CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Rothenberg, M., and N. E. Steenrod, The cohomology of classifying spaces and H-spaces,Bull. Amer. Math. Soc. 71 (1965), 872–875.CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Steenrod, N. E. Regular cycles of compact metric spaces,Ann. of Math. (2) 41 (1940), 833–851.CrossRefMathSciNetGoogle Scholar
  20. 20.
    Steenrod, N. E. Products of cocyles and extensions of mappings,Ann. of Math. (2) 48 (1947), 290–320.CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Täte, John. The higher dimensional cohomology groups of class field theory,Ann. of Math. (2) 56 (1952), 294–297.CrossRefMathSciNetGoogle Scholar
  22. 22.
    Weiss, Edwin.Cohomology of Groups, New York: Academic Press (1969).MATHGoogle Scholar
  23. 23.
    Whitehead, J. H. C. A certain exact sequence,Ann. of Math. (2) 52 (1950), 51–110.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc 1988

Authors and Affiliations

  • Saunders Mac Lane
    • 1
  1. 1.Department of MathematicsUniversity of ChicagoChicagoUSA

Personalised recommendations