Advertisement

Metals and Materials International

, Volume 13, Issue 2, pp 93–101 | Cite as

The effect of silicon, aluminium and phosphor on the dynamic behavior and phenomenological modelling of multiphase TRIP steels

  • Joost Van Slycken
  • Patricia Verleysen
  • Joris Degrieck
  • Jeremie Bouquerel
  • Bruno C. De Cooman
Article

Abstract

Multiphase TRansformation Induced Plasticity (TRIP) steels combine excellent ductility and high strength, making them ideally suited for shock absorbing parts in the automotive industry. When designing structures for impact, an understanding of the mechanical properties of materials under high strain rate conditions is essential. An extensive experimental program using a split Hopkinson tensile bar set-up was established in an effort to investigate the dynamic properties of various TRIP steel grades. Four different TRIP steels are described with varying contents of the alloying elements silicon, aluminium and phosphor. Moreover, several phenomenological models describing the strain rate and temperature-dependent mechanical behaviour are validated. TRIP steel grades in which aluminium is the main alloying element show high elongation values, whereas a high silicon content results in an increase in strength. The widely used Johnson-Cook model can describe the behaviour of TRIP steels and provides the opportunity to study its material and structural response.

Keywords

transformation induced plasticity split Hopkinson tensile bar high strain rate behaviour mechanical properties phenomenological modelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Wasilkowska, P. Tsipouridis, E. A. Werner, A. Pichler and S. Straint,J. Mater. Process. Tech. 157–158, 633 (2004).CrossRefGoogle Scholar
  2. 2.
    W. Bleck,Proc. Int. Conf. on TRIP-Aided High Strength Ferrous Alloys (ed. B. C. De Cooman), p. 13, Steel GRIPS, Ghent, Belgium (2002).Google Scholar
  3. 3.
    E. Davies and S. Hunter,J. Mech. Phys. Solids 11, 155 (1963).CrossRefADSGoogle Scholar
  4. 4.
    H. Kolsky,Proc. Phys. Soc. Lond. Sec. B 62, 676 (1949).CrossRefADSGoogle Scholar
  5. 5.
    A. Itami, M. Takahashi and K. Ushioda,Isij Int. 35, 1121 (1995).CrossRefGoogle Scholar
  6. 6.
    E. Girault, P. Jacques, Ph. Harlet, K. Mols, J. Van Humbeeck, E. Aemoudt, and F. Delannay,Mater. Charact. 40, 111 (1998).CrossRefGoogle Scholar
  7. 7.
    E. Beraha and B. Sphigler,Color Metallography, American Society for Metals (ASM), Metals Park, Ohio (1977).Google Scholar
  8. 8.
    L. Barbé,Ph. D. Thesis, Ghent University, Ghent (2006).Google Scholar
  9. 9.
    E. Girault, A. Mertens, P. Jacques, Y. Houbaert, B. Verlinden, and J. Van Humbeeck,Scripta mater. 44, 885 (2001).CrossRefGoogle Scholar
  10. 10.
    F. B. Pickering,Physical Metallurgy and the Design of steels, Applied Science Publisher Ltd, Essex (1978).Google Scholar
  11. 11.
    M. Stout and P. Follansbee,J. Eng. Mater.-T. ASME 108, 344 (1986).CrossRefGoogle Scholar
  12. 12.
    B. D. Cullity,Elements of X-Ray diffraction, 2nd ed. Addison-Wesley Publishing Co., Inc., Reading, Massachusetts, USA (1978).Google Scholar
  13. 13.
    M. De Meyer,Ph. D. Thesis, Ghent University, Ghent (2001).Google Scholar
  14. 14.
    L. Samek, B. De Cooman, J. Van Slycken, P. Verleysen, and J. Degrieck,Steel Res. Int. 75, 716 (2004).Google Scholar
  15. 15.
    G. Johnson and W. Cook,Proc. of the 7 th International Symposium of Ballistics, p. 541, The Hague, The Netherlands (1983).Google Scholar
  16. 16.
    H. Zhao,Mat. Sci. Eng. A.-struct. 230, 95 (1997).CrossRefGoogle Scholar
  17. 17.
    A. Mark, D. Boyd, and E. Essadiqi,Proc. Int. Conf. on Advanced high strength sheet steels for Automotive Applications (ed. M. A. Baker), p. 307, AIST, Winter Park, Colorado, USA (2004).Google Scholar
  18. 18.
    C. P. Salisbury, M. J. Worswick and R. Mayer,J. Phys. IV France 134, 43 (2006).CrossRefGoogle Scholar
  19. 19.
    A. C. Thompson, C. P. Salisbury, M. J. Worswick, and R. Mayer,J. Phys. IV France 134, 281 (2006).CrossRefGoogle Scholar
  20. 20.
    T. Borvik, A. H. Clausen, and M. Eriksson,Proc. Int. Symposium on Crashworthiness of Light-Weight Automotive Structures (ed., M. Langseth and A. H. Clausen), p. 93, Trondheim, Norway (2004).Google Scholar
  21. 21.
    K. P. Kim and H. Huh,Int. J. Solids Struct. 43 (21), 6488 (2006).MATHCrossRefGoogle Scholar
  22. 22.
    J. Van Slycken, P. Verleysen, J. Degrieck, L. Samek, and B. De Cooman,Metall. Mater. Trans. A 37, 1527 (2006).CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Joost Van Slycken
    • 1
  • Patricia Verleysen
    • 1
  • Joris Degrieck
    • 1
  • Jeremie Bouquerel
    • 2
  • Bruno C. De Cooman
    • 2
  1. 1.Faculty of Engineering, Department of Mechanical Construction and ProductionGhent UniversityGhentBelgium
  2. 2.Materials Design Laboratory, Graduate Institute for Ferrous TechnologyPOSTECHGyeongbukKorea

Personalised recommendations