Metals and Materials International

, Volume 10, Issue 6, pp 589–603 | Cite as

The role of modeling in the development of advanced processes for metallic aerospace alloys

  • S. L. Semiatin
  • P. A. Kobryn
  • O. M. Ivasishin
  • H. Zhuk
  • W. T. Wu
  • C. S. Lee
Article

Abstract

The application of various modeling techniques in the design and control of a number of emerging processes for aerospace alloys is summarized. These techniques include those that are based on melting and solidification (electron-beam cold-hearth melting, laser deposition), deformation (severe-plastic deformation), rapid heat treatment (dual-microstructure processing), and metal removal (distortion-free machining, high-speed machining). The models that have been developed and applied to these processes include those that are largely phenomenological (e.g., continuum FEM codes) or mechanism based. The key elements of models for various processes, important analytical/numerical results, and how these results are or can be used for manufacturing design are summarized. Challenges for the further development and application of the models for industrial processes are also described. These include refinement of the physics-based understanding of the processes and measurement of various material properties that are needed to apply the models in a real-world manufacturing environment.

Keywords

Models aerospace alloys advanced processes melting heat treatment machining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Mitchell,Iron Steel Inst. Jpn. Inter. 32, 557 (1992).Google Scholar
  2. 2.
    J. T. Schriempf, E. J. Whitney, P. A. Blomquist, and F. G. Arcella,Advances in Powder Metallurgy and Particulate Materials 3, 21 (1997).Google Scholar
  3. 3.
    Y. T. Zhu, T. G. Langdon, R. Z. Valiev, S. L. Semiatin, D. H. Shin, and T. C. Lowe,Ultrafine Grained Materials III, TMS, Warrendale, PA (2004).Google Scholar
  4. 4.
    S. L. Semiatin and I. M. Sukonnik,Physical Simulation of Casting, Hot Rolling, and Welding (eds., H. G. Suzuki, T. Sakai, and F. Matsuda), p. 395, Dynamic System Inc., Poestenkill, NY (1997).Google Scholar
  5. 5.
    O. M. Ivasishin, P. E. Markovsky, Yu. V. Matviychuk, and S. L. Semiatin,Metall. Mater. Trans. A 34, 147 (2003).CrossRefGoogle Scholar
  6. 6.
    Y. Yin, W. T. Wu, S. Srivatsa, S. L. Semiatin, and J. Gayda,NUMIFORM 2004 (eds., S. Ghosh, J. M. Castro, and J. K. Lee), p. 400, Columbus, Ohio (2004).Google Scholar
  7. 7.
    R. Komanduri, D. G. Flom, and M. Lee,J. Eng. for Industry, Trans. ASME 107, 325 (1985).CrossRefGoogle Scholar
  8. 8.
    A. Mitchell,Mater. Sci. Eng. A 243, 257 (1998).CrossRefGoogle Scholar
  9. 9.
    J. R. Wood,JOM 54, 56 (2002).CrossRefGoogle Scholar
  10. 10.
    J. P. Bellott, B. Foster, S. Hans, E. Hess, D. Ablitzer, and A. Mitchell,Metall. Mater. Trans. B 28, 1001 (1997).CrossRefGoogle Scholar
  11. 11.
    X. Huang, J. S. Chou, K. O. Yu, D. J. Tilly, and V. Suri,Physical Simulation of Casting, Hot Rolling, and Welding (eds., H. G. Suzuki, T. Sakai, and F. Matsuda), p. 489, Dynamic Systems Inc., Poestenkil, NY (1997).Google Scholar
  12. 12.
    A. Powell, J. Van den Avyle, B. Damkroger, J. Szekely, and U. Pal,Metall. Mater. Trans. B 28, 1227 (1997).CrossRefGoogle Scholar
  13. 13.
    I. Langmuir,Phys. Rev. 5, 329 (1913).CrossRefADSGoogle Scholar
  14. 14.
    V. G. Ivanchenko, O. M. Ivasishin, and S. L. Semiatin,Metall. Mater. Trans. B 34, 911 (2003).CrossRefGoogle Scholar
  15. 15.
    S. V. Akhonin, N. P. Trigub, V. N. Zamkov, and S. L. Semiatin,Metall. Mater. Trans. B 34, 447 (2003).CrossRefGoogle Scholar
  16. 16.
    T. Isawa, H. Nakamura, and K. Murakami,ISIJ Int. 32, 607 (1992).CrossRefGoogle Scholar
  17. 17.
    S. L. Semiatin, V. G. Ivanchenko, S. V. Akhonin, and O. M. Ivasishi,Metall. Mater. Trans. B 35, 235 (2004).CrossRefGoogle Scholar
  18. 18.
    H. S. Carslaw and J. C. Jaeger,Conduction of Heat in Solids, Oxford University Press, London (1959).Google Scholar
  19. 19.
    H. Zhuk, P. A. Kobryn, and S. L. Semiatin, Paper submitted toScripta mater. (2004).Google Scholar
  20. 20.
    P. A. Kobryn and S. L. Semiatin,J. Matter. Proc. Tech. 135, 330 (2003).CrossRefGoogle Scholar
  21. 21.
    D. M. Keicher, W. D. Miller, J. E. Smugeresky, and J. A. Romero,Hard Coatings Based on Borides, Carbides & Nitrides: Synthesis, Characterization & Applications (eds., Y-W. Chung, R. W. J. Chia, and A. Kumar), p. 369, TMS, Warrendale, PA (1998).Google Scholar
  22. 22.
    V. Semak, Unpublished research, Pennsylvania State University, State College, PA (1996).Google Scholar
  23. 23.
    J. L. Beuth and N. W. Klingbeil,JOM 53, 36 (2001).CrossRefGoogle Scholar
  24. 24.
    A. Vasinonta, J. L. Beuth, and M. L. Griffith,Solid Freeform Fabrication Proceedings (eds., D. L. Bourell, J. J. Beaman, R. H. Crawford, H. L. Marcus, and J. W. Barlow), p. 200, University of Texas, Austin, Texas (2000).Google Scholar
  25. 25.
    N. W. Klingbeil, C. J. Brown, S. Bontha, P. A. Kobryn, and H. L. Fraser,Solid Freeform Fabrication Proceedings (eds., D. L. Bourell, R. H. Crawford, J. J. Beaman, K. L. Wood, and H. L. Marcus) p. 142, University of Texas, Austin, Texas (2002).Google Scholar
  26. 26.
    ProCASTTM Users Manual & Technical References, Version 3.1.0. UES Software Inc., Dayton, OH (1998).Google Scholar
  27. 27.
    J. D. Hunt,Mater. Sci. Eng. A 65, 73 (1984).CrossRefADSGoogle Scholar
  28. 28.
    P. A. Kobryn, N. W. Klingbeil, and C. J. Brown, Unpublished research, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH (2003).Google Scholar
  29. 29.
    V. M. Segal,Mater. Sci. Eng. A 197, 157 (1995).CrossRefGoogle Scholar
  30. 30.
    Y. Beygelzimer, D. Orlov, and V. Varyukhin,Ultrafine Grained Materials II (eds., Y. T. Zhu, T. G. Langdon, R. S. Mishra, S. L. Semiatin, M. J. Saran, and T. C. Lowe), p. 297, TMS, Warrendale, PA (2002).Google Scholar
  31. 31.
    V. M. Segal, V. I. Reznikov, A. E. Drobyshevskiy and V. I. Kopylov,Russ. Metall. 1, 99 (1981).Google Scholar
  32. 32.
    V. M. Segal,Mater. Sci. Eng. A 271, 322 (1999).CrossRefGoogle Scholar
  33. 33.
    Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T. G. Langdon,Scripta mater. 35, 143 (1996).CrossRefGoogle Scholar
  34. 34.
    M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, and T. G. Langdon,Mater. Sci. Eng. A 257, 328 (1998).CrossRefGoogle Scholar
  35. 35.
    A. Gholinia, P. Bate, and P. B. Prangnell,Acta mater. 50, 2121 (2002).CrossRefGoogle Scholar
  36. 36.
    I. J. Beyerlein, S. Li, D. J. Alexander, C. T. Necker, C. N. Tome', and M. A. Bourke,Ultrafine Grained Materials III (eds., Y. T. Zhu, T. G. Langdon, R. Z. Valiev, S. L. Semiatin D. H. Shin, and T. C. Lowe), p. 185, TMS, Warrendale, PA (2004).Google Scholar
  37. 37.
    L. S. Toth,Advanced Engineering Materials 5, 308 (2003).CrossRefGoogle Scholar
  38. 38.
    L. S. Toth, R. A. Massion, L. Germain, S. C. Baik, and S. Suwas,Acta mater. 52, 1885 (2004).CrossRefGoogle Scholar
  39. 39.
    J-Y. Suh, H-S. Kim, J-W. Park, and J-Y. Chang,Scripta mater. 44, 677 (2001).CrossRefGoogle Scholar
  40. 40.
    R. Srinivasan,Scripta mater. 44, 91, (2001).CrossRefGoogle Scholar
  41. 41.
    Y-L. Yang and S. Lee,J. Mater. Proc. Tech. 140, 583 (2003).CrossRefGoogle Scholar
  42. 42.
    S. J. Oh and S. B. Kang,Mater. Sci. Eng. A 343, 107 (2003).CrossRefGoogle Scholar
  43. 43.
    X. Kaculi,Proc. 2003 ASME Inter. Mech. Eng. Congress, p. 1, ASME, New York (2003).Google Scholar
  44. 44.
    S. C. Baik, Y. Estrin, H. S. Kim, and R. J. Hellmig,Mater. Sci. Eng. A 351, 86 (2003).CrossRefGoogle Scholar
  45. 45.
    S. Ferrasse, V. M. Segal, S. R. Kalidindi, and F. Alford,Mat. Sci. Eng. A 368, 28 (2004).CrossRefGoogle Scholar
  46. 46.
    S. R. Agnew, PhD Thesis, Northwestern University (1998).Google Scholar
  47. 47.
    S. L. Semiatin, V. M. Segal, R. E. Goforth, N. Frey, and D. P. DeLo,Metall. Mater. Trans A 30, 1425 (1999).CrossRefGoogle Scholar
  48. 48.
    S. L. Semiatin and J. J. Jonas,Formability and Workability of Metals, ASM, Materials Park, OH (1984).Google Scholar
  49. 49.
    D. P. DeLo and S. L. Semiatin,Metall. Mater. Trans. A 30, 1391 (1999).CrossRefGoogle Scholar
  50. 50.
    S. L. Semiatin, D. P. DeLo, and E. B. Shell,Acta mater. 48, 1841 (2000).CrossRefGoogle Scholar
  51. 51.
    P. N. Fagin, J. O. Brown, T. M. Brown, K. V., Jata, and S. L., Semiatin,Metall. Mater. Trans. A 32, 1869 (2001).CrossRefGoogle Scholar
  52. 52.
    M. G. Cockcroft and D. J. Latham,J. Inst. Metals 96, 33 (1968).Google Scholar
  53. 53.
    R. Lapovok,Inter. J. Fracture 115, 159 (2002).CrossRefGoogle Scholar
  54. 54.
    R. Ye. Lapovok and R. E. Cottam,Ultrafine Grained Materials II (eds., Y. T. Zhu, T. G. Langdon, R. S. Mishra, S. L. Semiatin M. J. Saran T. C. Lowe), p. 547, TMS, Warrendale, PA, (2002).Google Scholar
  55. 55.
    D. Furrer and J. Gayda,Advanced Materials and Processes 161, 36 (2003).Google Scholar
  56. 56.
    J. M. Hyzak, C. A. MacIntyre, and D. V. Sundberg,Superalloys 1988 (eds., S. Reichmannet al.), p. 121, TMS (1988).Google Scholar
  57. 57.
    O. M. Ivasishin and S. L. Semiatin,Proc. THERMEC 2000 (eds., T. Chandraet al.), Elsevier Science Ltd., Amsterdam, The Netherlands (2001) (pdf only).Google Scholar
  58. 58.
    O. M. Ivasishin,Sixth World Conference on Titanium (eds., P. Lacombe, R. Tricot, G. Beranger), p. 1535, Societé Francaise de Metallurgie, Les Ulis Cedex, France (1998).Google Scholar
  59. 59.
    O. M. Ivasishin and H. M. Flower,J. Mater. Sci. 21, 2519 (1986).CrossRefADSGoogle Scholar
  60. 60.
    S. L. Semiatin, J. C. Soper, and I. M. Sukonnik,Acta mater. 44, 1979 (1996).CrossRefGoogle Scholar
  61. 61.
    S. L. Semiatin, P. N. Fagin, M. G. Glavicic, I. M. Sukonnik, and O. M. Ivasishin,Mater. Sci. Eng. A 299, 225 (2001).CrossRefGoogle Scholar
  62. 62.
    O. M. Ivasishin, S. V. Shevchenko, and S. L. Semiatin,Mater. Sci. Eng. A 332, 343 (2002).CrossRefGoogle Scholar
  63. 63.
    O. M. Ivasishin, S. L. Semiatin, P. E. Markovsky, S. V. Shevchenko, and S. V. Ulshin,Mater. Sci. Eng. A 337, 88 (2002).CrossRefGoogle Scholar
  64. 64.
    O. M. Ivasishin, S. V. Shevchenko, P. E. Markovsky, and S. L. Semiatin,Ti-2003: Science Technology (eds., G. Luetjering and J. Albrecht), p. 1307, Wiley-VCH Verlag GmbH (2004).Google Scholar
  65. 65.
    O. M. Ivasishin, S. V. Shevchenko, N. L. Vasiliev, and S. L. Semiatin,Acta mater. 51, 1019 (2003).CrossRefGoogle Scholar
  66. 66.
    K. Iwata, K. Osakada, and Y. Terasaka,J. Eng. Mat. Tech., Trans. ASME 106, 132 (1984).CrossRefGoogle Scholar
  67. 67.
    Z. C. Lin and S. Y. Lin,J. Eng. Mat. Tech., Trans. ASME 114, 218 (1992).CrossRefGoogle Scholar
  68. 68.
    J. Hashemi, A. A. Tseng, and P. C. Chou,J. Mater. Eng. Perf. 3, 712 (1994).CrossRefGoogle Scholar
  69. 69.
    T. Obikawa and E. Usui,J. Mfg. Sci. Eng., Trans ASME,118, 208 (1996).CrossRefGoogle Scholar
  70. 70.
    E. Ceretti, P. Fallböhmer, W. T. Wu, and T. Altan,J. Mater. Proc. Tech. 59, 169 (1996).CrossRefGoogle Scholar
  71. 71.
    P. Chigurupati, J-T. Jinn, J. Y. Oh, Y. Yin, H. Zhang and W. T. Wu,NUMIFORM 2004 (eds., S. Ghosh, J. M. Castro, and J. K. Lee), p. 1359, Columbus, Ohio (2004).Google Scholar
  72. 72.
    S. H. Rhim and S. I. Oh,NUMIFORM 2004 (eds., S. Ghosh, J. M. Castro, and J. K. Lee), p. 143, Columbus, Ohio (2004).Google Scholar
  73. 73.
    J. Hua,PhD Thesis, Ohio State University, Columbus, Ohio (2002).Google Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  • S. L. Semiatin
    • 1
  • P. A. Kobryn
    • 1
  • O. M. Ivasishin
    • 2
  • H. Zhuk
    • 3
  • W. T. Wu
    • 4
  • C. S. Lee
    • 5
  1. 1.Air Force Research Laboratory, Materials and Manufacturing DirectorateAFRL/MLLMWright-Patterson Air Force BaseUSA
  2. 2.G. V. Kurdyumov Institute for Metal PhysicsKyivUkraine
  3. 3.E.O. Paton Electric Welding InstituteKyivUkraine
  4. 4.Scientific Forming Technologies CorporationColumbusUSA
  5. 5.Pohang University of Science and TechnologyPohangKorea

Personalised recommendations