The Mathematical Intelligencer

, Volume 18, Issue 2, pp 38–47 | Cite as

Mathematical entertainments

Tiling rectangles with polyominoes
  • David Gale
  • Solomon W. Golomb
  • Robert Haas


Combinatorial Theory Infinite Plane Infinite Strip Congruent Copy Straight Strip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Robert Berger, The undecidability of the domino problem,Memoirs of the American Math. Society, no. 66, 1—72, 1966.Google Scholar
  2. Karl A. Dahlke, The Y-hexomino has order 92,Journal of Combinatorial Theory, Series A, 51, 125–126 (1989).CrossRefzbMATHMathSciNetGoogle Scholar
  3. Karl A. Dahlke, A heptomino of order 76,Journal of Combinatorial Theory, Series A, 127—128 (1989).Google Scholar
  4. Karl A. Dahlke, Solomon W. Golomb and Herbert Taylor, An octomino of high order,Journal of Combinatorial Theory, Series A, 70,157–158 (1995).CrossRefzbMATHMathSciNetGoogle Scholar
  5. Martin Gardner, Mathematical Games: On “rep-tiles”, polygons that can make larger and smaller copies of themselves,Scientific American, 208, 154–164 (1963).CrossRefGoogle Scholar
  6. Solomon W. Golomb, Replicating figures in the plane,Mathematical Gazette, 48, 403–412 (1964).CrossRefzbMATHGoogle Scholar
  7. Solomon W. Golomb, Tiling with polyominoes,Journal of Combinatorial Theory, 1, 280–296 (1966).CrossRefzbMATHMathSciNetGoogle Scholar
  8. Solomon W. Golomb, Tiling with sets of polyominoes,Journal of Combinatorial Theory, 9, 60–71 (1970).CrossRefzbMATHMathSciNetGoogle Scholar
  9. Solomon W. Golomb, Polyominoes which tile rectangles,Journal of Combinatorial Theory, Series A, 51,117–124 (1989).CrossRefzbMATHMathSciNetGoogle Scholar
  10. B. Grünbaum and G.C. Shephard,Tilings and Patterns, Freeman, New York (1987).zbMATHGoogle Scholar
  11. A.S. Kahr, E.F. Moore, and H. Wang, Entscheidungsproblem reduced to the ∀∃∀ case.Proceedings, National Academy of Sciences USA, 48, 365–377, 1962.CrossRefzbMATHMathSciNetGoogle Scholar
  12. David A. Klarner, Packing a rectangle with congruent N-ominoes,Journal of Combinatorial Theory, 7, 107–115 (1969).CrossRefzbMATHMathSciNetGoogle Scholar
  13. William Rex Marshall, private communications dated 14 May, 1990, 25 November, 1991, and 6 June, 1995. Roger Penrose,Shadows of the Mind, Oxford University Press, 1994.Google Scholar
  14. Michael Reid, private communications from 1992 to 1995. Ian Stewart and A. Wormstein, Polyominoes of order 3 do not exist,Journal of Combinatorial Theory, Series A, 61, 130–136, 1992.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1996

Authors and Affiliations

  • David Gale
    • 1
  • Solomon W. Golomb
    • 2
  • Robert Haas
    • 3
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA
  2. 2.University of Southern CaliforniaLos AngelesUSA
  3. 3.Cleveland HeightsUSA

Personalised recommendations