The Mathematical Intelligencer

, Volume 18, Issue 4, pp 9–18 | Cite as

The “indexed” theorem

  • Alfredo OctavioEmail author
  • J. BorweinEmail author
  • P. BorweinEmail author
  • R. GirgensohnEmail author
  • S. ParnesEmail author
Department Opinion


Riemann Hypothesis Experimental Mathematic Book Series Source Journal Mathematical Review 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Margaret Bledsoe and Paul Garabedian, “On the weak solution of Burger’sequation” (Spanish),AdaCientiß ca Venezolana 44 (1993), 337–340.zbMATHMathSciNetGoogle Scholar
  2. 2.
    Jorge Ize, Articulos de investigation en matemáticas y evaluation,Ciencia 45 (1992), 157–173.Google Scholar
  3. 3.
    Alfredo Octavio,Dual algebras generated by commuting contractions, PhD dissertation, The University of Michigan, 1991.Google Scholar
  4. 4.
    Gary Taubes, “Measure for measure in science,”Science 260, May 1993, 884–886.CrossRefGoogle Scholar
  5. 5.
    W. Wayt Gibbs, “Lost science in the third world, ”Scientific American, August 1995, 92–99.Google Scholar


  1. 1.
    M. Atiyah, A. Borel, G.J. Chaitin, etal., Responses to “Theoretical Mathematics: Towards a Cultural Synthesis of Mathematics and Theoretical Physics” by A. Jaffe and F. Quinn,Bull. Am. Math. Soc. (2)30 (1994), 178–207.CrossRefzbMATHGoogle Scholar
  2. 2.
    D. H. Bailey, J. M. Borwein, and R. Girgensohn, Experimental evaluation of Euler sums,Experimental Math. 3(1) (1994), 17–30.CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    J. M. Borwein, P. Borwein, R. Girgensohn, S. and S. Parnes, Experimental mathematical investigation of decimal and continued fraction expansions of select constants (unpublished).Google Scholar
  4. 4.
    J. M. Borwein, P. Borwein, R. Girgensohn, and S. Parnes, Making sense of experimental mathematics, CECM Preprint 95:032 (1995).Google Scholar
  5. 5.
    G. J. Chaitin, Randomness and complexity in pure mathematics,Int. J. Bifurcation Chaos 4 (1994), 3–15.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    D. Epstein, S. Levy, and R. Llave, de la, About this journalExperimental Math. 1(1) (1992), 1–3.Google Scholar
  7. 7.
    A. Jaffe and F. Quinn, Theoretical mathematics: Towards a cultural synthesis of mathematics and theoretical physics,Bull. Am. Math. Soc. (2) 29 (1993), 1–13.CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    A. Jaffe and F. Quinn, Response to comments on “Theoretical Mathematics,“Bull Am. Math. Soc. (2)30 (1994), 208–211.CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    I. Lakatos,Proofs and Refutations, Cambridge: Cambridge University Press (1970).Google Scholar
  10. 10.
    I. Lakatos,The Methodology of Scientific Research Programmes: Philosophical Papers Volume 1, Cambridge: Cambridge University Press (1978).CrossRefGoogle Scholar
  11. 11.
    P. B. Medawar,Advice to a Young Scientist, New York: Harper Colophon (1981).Google Scholar
  12. 12.
    W. P. Thurston, On proof and progress in mathematics,Bull. Am. Math. Soc. (2)30 (1994), 161–177.CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    D. Zeilberger, Identities in search of identities, preprint (1992).Google Scholar
  14. 14.
    D. Zeilberger, Theorems for a price: Tomorrow’s semi-rigorous mathematical culture,Notices Am. Math. Soc. 40(8) (1993), 978–981. Reprinted inThe Mathematical Intelligencer 16 (1994), no. 4,11–14.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1996

Authors and Affiliations

  1. 1.IVICCaracas
  2. 2.Centre for Experimental and Constructive MathematicsSimon Fraser UniversityBurnabyCanada
  3. 3.Department of Mathematics and StatisticsSimon Fraser UniversityBurnabyCanada
  4. 4.Institut für MathematikMedizinische Universität zu LübeckLübeckGermany
  5. 5.ArvadaUSA

Personalised recommendations