The Mathematical Intelligencer

, Volume 6, Issue 4, pp 47–53 | Cite as

The Emperor’s New clothes: Full regalia, G string, or nothing?

  • Branko Grünbaum


Symmetry Group Prime Minister Mathematical Intelligencer Penrose Tile Convex Pentagon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. C. Andersen, The Emperor’s New Clothes. Pages 81 to 88 in “Tales”, Vol. 1. Translated by R. P. Keigwin. Flensted Publishers, Odense 1971. [Naturally, there are countless other editions and translations.]Google Scholar
  2. 2.
    J. J. Burckhardt, Die Mathematik an der Universität Zürich 1916-1950 unter den Professoren R. Fueter, A. Speiser, P. Finsler. Beiheft Nr. 16, Elemente der Mathematik, Birkhäuser, Basel 1980.Google Scholar
  3. 3.
    H. Butterfield, The Whig Interpretation of History. Bell and Sons, London 1931.Google Scholar
  4. 4.
    B. Grünbaum, Review of “Geometric Symmetry” by E. H. Lockwood and R. H. Macmillan and “Symmetry: An Analytical Treatment” by J. L. Kavanau. Mathematical Intelligencer (to appear).Google Scholar
  5. 5.
    B. Grunbaum and G. C. Shephard, Incidence symbols and their applications. Proc. Symposia Pure Mathematics 34(1979), 199–244.CrossRefMathSciNetGoogle Scholar
  6. 6.
    B. Grunbaum and G. C. Shephard, Tilings and Patterns. Freeman and Co., New York (to appear).Google Scholar
  7. 7.
    O. Jones, The Grammar of Ornament. Quaritch, London 1868.Google Scholar
  8. 8.
    E. Müller, Gruppentheoretische und Strukturanalytische Untersuchung der Maurischen Ornamente aus der Alhambra in Granada. Ph.D. Thesis, University of Zürich. Baublatt, Rüschlikon 1944.Google Scholar
  9. 9.
    W. Ostwald, Die Harmonie der Formen. Unesma, Leipzig 1922.Google Scholar
  10. 10.
    W. Osiwald, Die Welt der Formen. Entwicklung und Ordnung der gesetzlich-schönen Gebilde. Parts 1 to 4, Unesma, Leipzig 1922-1925.Google Scholar
  11. 11.
    J. Pedersen, Geometry: The unity of theory and practice. Mathematical Intelligencer 5(1983), 32–37).CrossRefGoogle Scholar
  12. 12.
    R. Penrose, Pentaplexity. Eureka 39(1978), 16–22 ( = Mathematical Intelligencer 2(1979), 32-37).Google Scholar
  13. 13.
    W. M. F. Petrie, Egyptian Decorative Art. Second ed., Methuen & Co., London 1920.Google Scholar
  14. 14.
    A. C. T. E. Prisse d’Avennes, Histoire de l’art égyptien d’après les monuments, depuis les temps les plus reculés jusqú à la domination romaine. A. Bertrand, Paris 1878/79.Google Scholar
  15. 15.
    R. M. Robinson, Undecidability and nonperiodicity of tilings of the plane. Inventiones Mathematicae 12(1971), 177–209.CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    D. Schattschneider, Tiling the plane with congruent pentagons. Mathematics Magazine 51(1978), 29–44.CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    D. Schattschneider, In praise of amateurs. Pages 140 to 166 and five color plates, in “The Mathematical Gardner” (D. A. Klarner, ed.), Prindle, Weber & Schmidt, Boston 1981.Google Scholar
  18. 18.
    A. Speiser, Die Theorie der Gruppen von endlicher Ordnung. Second ed., Springer, Berlin 1927. Third ed., Springer, Berlin 1937 (= Dover, New York 1943). Fourth ed., Birkhäuser, Basel, 1956.Google Scholar
  19. 19.
    H. Wang, Notes on a class of tiling problems. Fundamenta Mathematicae 82(1975), 295–305.zbMATHGoogle Scholar
  20. 20.
    H. Weyl, Symmetry. J. Wash. Acad. Sci. 28(1938), 253- 271 (= Gesammelte Abhandlungen (K. Chandrasek- haran, ed.) Bd. III, pp. 592-610. Springer, Berlin 1968).Google Scholar
  21. 21.
    H. Weyl, Symmetry. Princeton University Press, Princeton 1952; paperback printing 1982.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1984

Authors and Affiliations

  • Branko Grünbaum
    • 1
  1. 1.University of WashingtonSeattle

Personalised recommendations