The Mathematical Intelligencer

, Volume 10, Issue 3, pp 32–42 | Cite as

Symmetry, voting, and social choice

  • Donald G. Saari
  • Friedrich L. Bauer


Social Choice Wreath Product Condorcet Winner Approval Vote Borda Count 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. J. Arrow,Social Choice and Individual Values, New York: Wiley (1951).zbMATHGoogle Scholar
  2. 2.
    A. Sen, Social Choice Theory, inA Handbook of Mathematical Economics, K. J. Arrow and M. D. Intriligator (eds.), New York: North-Holland (1986).Google Scholar
  3. 3.
    D. G. Saari, The optimal ranking method is the Borda Count, Northwestern University Discussion Paper (1985).Google Scholar
  4. 4.
    S. Brams and P. Fishburn, Paradoxes of preferential voting,Mathematics Magazine 56 (1983), 207–214.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    D. G. Saari and J. Van Newenhizen, A case against bullet, approval, and plurality voting, Northwestern University Discussion Paper (1985). (A revised version will appear inPublic Choice.)Google Scholar
  6. 6.
    A. Gibbard, Manipulation of voting schemes: A general result,Econometrica 41 (1973), 587–601.CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    M. Satterthwaite, Strategy-proofness and Arrow’s conditions,Journal of Economic Theory 10 (1975), 187–217.CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    D. G. Saari, Susceptibility to manipulation, Northwestern University preprint, September 1986.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 1988

Authors and Affiliations

  • Donald G. Saari
    • 1
  • Friedrich L. Bauer
    • 2
  1. 1.Department of MathematicsNorthwestern UniversityEvanstonUSA
  2. 2.Institut für Informatik der Technischen Universität MünchenPostfachFederal Republic of Germany

Personalised recommendations