Advertisement

The Mathematical Intelligencer

, Volume 10, Issue 3, pp 24–31 | Cite as

Ramanujan—100 years old (fashioned) or 100 years new (fangled)?

  • Bruce C. Berndt
Article

Keywords

Modular Form Asymptotic Formula Continue Fraction Analytic Number Theory Pythagorean Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. E. Andrews, The fifth and seventh order mock theta functions,Trans. Amer. Math. Soc. 293 (1986), 113–134.CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    ——, Questions and conjectures in partition theory,Amer. Math. Monthly 93 (1986), 708–711.CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    G. E. Andrews,q-series: Their development and applications in analysis, number theory, combinatorics, physics, and computer algebra, CBMS regional conf., no. 66, Amer. Math. Soc., Providence, 1986.Google Scholar
  4. 4.
    G. E. Andrews and D. Hickerson,Partitions and indefinite quadratic forms, to appear.Google Scholar
  5. 5.
    G. E. Andrews, R. A. Askey, B. C. Berndt, K. G. Ramanathan, and R. A. Rankin, eds.,Ramanujan Revisited, Academic Press, Boston, 1988, to appear.zbMATHGoogle Scholar
  6. 6.
    R. Apéry, Interpolation de fractions continues et irrationalite de certaines constantes,Bull. Section des Sci., Tome III, Bibliotheque Nationale, Paris, 1981, 37–63.Google Scholar
  7. 7.
    R. J. Baxter, Ramanujan’s identities in statistical mechanics,Ramanujan Revisited, Academic Press, Boston, 1988, to appear.Google Scholar
  8. 8.
    B. C. Berndt,Ramanujan’s Notebooks, Part I, Springer-Verlag, New York, 1985.zbMATHGoogle Scholar
  9. 9.
    B. C. Berndt and R. J. Evans, Chapter 13 of Ramanujan’s second notebook: Integrals and asymptotic expansions,Expos. Math. 2 (1984), 289–347.zbMATHMathSciNetGoogle Scholar
  10. 10.
    B. C. Berndt, R. L. Lamphere, and B. M. Wilson, Chapter 12 of Ramanujan’s second notebook: Continued fractions,Rocky Mt. J. Math. 15 (1985), 235–310.CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    H. Cohen, Sur une fausse forme modulaire liee a des identites de Ramanujan et Andrews,Proceedings of the International Number Theory Conf., Université Laval, 1987, to appear.Google Scholar
  12. 12.
    R. J. Evans, Ramanujan’s second notebook: asymptotic expansions for hypergeometric series and related functions,Ramanujan Revisited, Academic Press, Boston, 1988, to appear.Google Scholar
  13. 13.
    G. H. Hardy,Ramanujan, third ed., Chelsea, New York, 1978.Google Scholar
  14. 14.
    G. H. Hardy and S. Ramanujan, The normal number of prime factors of a numbern, Quart. J. Math. 48 (1917), 76–92.zbMATHGoogle Scholar
  15. 15.
    G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis,Proc. London Math. Soc. (2) 17 (1918), 75–115.CrossRefGoogle Scholar
  16. 16.
    S. Raghavan, Euler products, modular identities and elliptic integrals in Ramanujan’s manuscripts I,Ramanujan Revisited, Academic Press, Boston, 1988, to appear.Google Scholar
  17. 17.
    K. G. Ramanathan, Srinivasa Ramanujan 22 December 1887-26 April 1920,J. Indian Math. Soc., to appear.Google Scholar
  18. 18.
    S. Ramanujan, On certain arithmetical functions,Trans. Cambridge Philos. Soc. 22 (1916), 159–184.Google Scholar
  19. 19.
    S. Ramanujan,Collected Papers, Chelsea, New York, 1962.Google Scholar
  20. 20.
    S. Ramanujan,Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957.Google Scholar
  21. 21.
    S. Ramanujan,Lost Notebook, unpublished manuscript, Trinity College Library, Cambridge.Google Scholar
  22. 22.
    S. S. Rangachari, Euler products, modular identities and elliptic integrals in Ramanujan’s manuscripts II,Ramanujan Revisited, Academic Press, Boston, 1988, to appear.Google Scholar
  23. 23.
    R. A. Rankin, Ramanujan’s manuscripts and notebooks,Bull. London Math. Soc. 14 (1982), 81–97.CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    R. A. Rankin, Ramanujan as a patient,Proc. Indian Acad. Sci. (Math. Sci.) 93 (1984), 79–100.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1988

Authors and Affiliations

  • Bruce C. Berndt
    • 1
  1. 1.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations