Advertisement

The Mathematical Intelligencer

, Volume 23, Issue 2, pp 17–28 | Cite as

Crocheting the hyperbolic plane

  • David W. Henderson
  • Daina Taimina
Article

Keywords

Gaussian Curvature Principal Curvature Normal Curvature Mathematical Intelligencer Hyperbolic Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Coxeter, H. S. M., and S. L. Greitzer.Geometry Revisited. New Mathematics Library 19, New York City: L.W. Singer Company, 1967.Google Scholar
  2. [2]
    N. V. Efimov. “Generation of singularities on surfaces of negative curvature” [Russian],Mat. Sb. (N.S.) 64 (106) (1964), 286–320.MathSciNetGoogle Scholar
  3. [3]
    Henderson, D. W.Differential Geometry: A Geometric Introduction. Upper Saddle River, NJ: Prentice Hall, 1998.MATHGoogle Scholar
  4. [4]
    Henderson, D. W.Experiencing Geometry in Euclidean, Spherical, and Hyperbolic Spaces. Upper Saddle River, NJ: Prentice Hall, 2001.Google Scholar
  5. [5]
    Hilbert, D. “Über Flächen von konstanter gaussscher Krümmung,”Transactions of the A.M.S. 2 (1901), 87–99.MATHMathSciNetGoogle Scholar
  6. [6]
    Hilbert, D. and S. Cohn-Vossen.Geometry and the Imagination. New York: Chelsea Publishing Co., 1983.Google Scholar
  7. [7]
    Kuiper, N. “On C1-isometric embeddings il,”Nederl. Akad. Wetensch. Proc. Ser. A (1955), 683-689.Google Scholar
  8. [8]
    Milnor, T. “Efimov’s theorem about complete immersed surfaces of negative curvature,”Adv. Math. 8 (1972), 474–543.CrossRefMATHMathSciNetGoogle Scholar
  9. [9]
    Osserman, R.Poetry of the Universe: A Mathematical Exploration of the Cosmos. New York: Anchor Books, 1995.Google Scholar
  10. [10]
    Spivak, M.A Comprehensive Introduction to Differential Geometry. Vol. III. Wilmington, DE: Publish or Perish Press, 1979.Google Scholar
  11. [11]
    Thurston, W.Three-Dimensional Geometry and Topology, Vol. 1. Princeton, NJ: Princeton University Press, 1997.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2001

Authors and Affiliations

  1. 1.Department of MathematicsCornell UniversityIthacaUSA

Personalised recommendations