The Mathematical Intelligencer

, Volume 23, Issue 2, pp 17–28 | Cite as

Crocheting the hyperbolic plane



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Coxeter, H. S. M., and S. L. Greitzer.Geometry Revisited. New Mathematics Library 19, New York City: L.W. Singer Company, 1967.Google Scholar
  2. [2]
    N. V. Efimov. “Generation of singularities on surfaces of negative curvature” [Russian],Mat. Sb. (N.S.) 64 (106) (1964), 286–320.MathSciNetGoogle Scholar
  3. [3]
    Henderson, D. W.Differential Geometry: A Geometric Introduction. Upper Saddle River, NJ: Prentice Hall, 1998.MATHGoogle Scholar
  4. [4]
    Henderson, D. W.Experiencing Geometry in Euclidean, Spherical, and Hyperbolic Spaces. Upper Saddle River, NJ: Prentice Hall, 2001.Google Scholar
  5. [5]
    Hilbert, D. “Über Flächen von konstanter gaussscher Krümmung,”Transactions of the A.M.S. 2 (1901), 87–99.MATHMathSciNetGoogle Scholar
  6. [6]
    Hilbert, D. and S. Cohn-Vossen.Geometry and the Imagination. New York: Chelsea Publishing Co., 1983.Google Scholar
  7. [7]
    Kuiper, N. “On C1-isometric embeddings il,”Nederl. Akad. Wetensch. Proc. Ser. A (1955), 683-689.Google Scholar
  8. [8]
    Milnor, T. “Efimov’s theorem about complete immersed surfaces of negative curvature,”Adv. Math. 8 (1972), 474–543.CrossRefMATHMathSciNetGoogle Scholar
  9. [9]
    Osserman, R.Poetry of the Universe: A Mathematical Exploration of the Cosmos. New York: Anchor Books, 1995.Google Scholar
  10. [10]
    Spivak, M.A Comprehensive Introduction to Differential Geometry. Vol. III. Wilmington, DE: Publish or Perish Press, 1979.Google Scholar
  11. [11]
    Thurston, W.Three-Dimensional Geometry and Topology, Vol. 1. Princeton, NJ: Princeton University Press, 1997.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2001

Authors and Affiliations

  1. 1.Department of MathematicsCornell UniversityIthacaUSA

Personalised recommendations