Metals and Materials

, Volume 4, Issue 4, pp 931–938

Yield and strain rate potentials for aluminum alloy sheet forming design

  • Kwansoo Chung
  • Frédéric Barlat
  • Jeong-Whan Yoon
  • Owen Richmond
  • John C. Brem
  • Daniel J. Lege
Article

Abstract

In this paper, potentials that analytically describe the plastic behavior of orthotropic metals are reviewed. These potentials, yield functions or strain rate potentials were expressed in six-dimensional stress or strain rate spaces, respectively. Some of the recently developed potentials that are consistent with polycrystal plasticity models are briefly discussed and applied to computational analysis and design of sheet metal forming processes.

Key words

plasticity anisotropy yield surface strain rate potential sheet metal forming blank design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K, Chung and O. Richmond,Int. J. Mech. Sci. 34, 575 (1992).MATHCrossRefGoogle Scholar
  2. 2.
    K. Chung and O. Richmond,Int. J. Mech. Sci. 34, 617 (1992).MATHCrossRefGoogle Scholar
  3. 3.
    D. V. Wilson,Int. Mat. Review 35, 329 (1990).Google Scholar
  4. 4.
    F. Barlat and J. Lian,Int. J. Plasticity 5, 51 (1989).CrossRefGoogle Scholar
  5. 5.
    F. Barlat, D. J. Lege and J. C. Brem,Int. J. Plasticity 7, 693 (1991).CrossRefGoogle Scholar
  6. 6.
    R. Hill,The Mathematical Theory of Plasticity, University Press, Oxford (1950).MATHGoogle Scholar
  7. 7.
    J. W. F. Bishop and R. Hill,Phil. Mag. 42, 414 (1951).MATHMathSciNetGoogle Scholar
  8. 8.
    F. Barlat, Y. Maeda, K. Chung, M. Yanagawa, J. C. Brem, Y. Hayashida, D. J. Lege, K. Matsui, S. J. Murtha, S. Hattori, R. C. Becker and S. Makosey,J. Mech. Phys. Solids 45, 1727 (1997).CrossRefADSGoogle Scholar
  9. 9.
    W. F. Hosford,J. Appl. Mech. 39, 607 (1993).Google Scholar
  10. 10.
    H. Ziegler,A Introduction to Thermodynamics. North- Holland, Amsterdam (1977).Google Scholar
  11. 11.
    R. Hill,J. Mech. Phys. Solids 35, 23 (1987).MATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    R. Hill,Math. Proc. Camb. Phil. Soc. 85, 179 (1979).MATHCrossRefGoogle Scholar
  13. 13.
    F. Barlat, K. Chung and O. Richmond,Int. J. Plasticity 9, 51 (1993).CrossRefGoogle Scholar
  14. 14.
    F. Barlat and K. Chung,Modeling and Simulation in Materials Science and Engineering 1, 403 (1993).CrossRefADSGoogle Scholar
  15. 15.
    NUMISHEET’ 93, J. Mater. Proc. Tech., The 2nd International Conference on “NumericalSimulations of 3D Sheet Metal Forming Processes” (eds., A. Makinouchi, E. Nakamachi, E. Onate and R. H. Wagoner), vol. 50, Isehara, Japan (1995).Google Scholar
  16. 16.
    J. W. Yoon, I. S. Song, D. Y. Yang, K. Chung and F. Barlat,Int. J. Mech. Sci. 37, 773 (1995).CrossRefGoogle Scholar
  17. 17.
    D. J. Yoo, I. S. Song, D. Y. Yang and J. H. Lee,Int. J. Mech. Sci. 36, 513 (1994).MATHCrossRefGoogle Scholar
  18. 18.
    K. Chung and O. Richmond,Int. J. Plasticity 9, 907 (1993).MATHCrossRefGoogle Scholar
  19. 19.
    K. Chung and O. Richmond,ASME J. Appl. Mech. 61, 176 (1994).MATHCrossRefGoogle Scholar
  20. 20.
    R. Hill,J. Mech. Phys. Solids 34, 511 (1986).MATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    F. Barlat, K. Chung and O. Richmond,Metall. Trans. 25A, 1209 (1994).Google Scholar
  22. 22.
    K. Chung, F. Barlat, J. C. Brem, D. J. Lege and O. Richmond,Int. J. Mech. Sci. 39, 105 (1997).MATHCrossRefGoogle Scholar
  23. 23.
    A. P. Karafillis and M. C. Boyce,J. Mech. Phys. Solids 41, 1859 (1993).MATHCrossRefADSGoogle Scholar

Copyright information

© Springer 1998

Authors and Affiliations

  • Kwansoo Chung
    • 1
  • Frédéric Barlat
    • 2
  • Jeong-Whan Yoon
    • 3
  • Owen Richmond
    • 2
  • John C. Brem
    • 2
  • Daniel J. Lege
    • 2
  1. 1.Department of Fiber and Polymer Science, College of EngineeringSeoul National UniversityKwanak-kuKorea
  2. 2.Alcoa Technical CenterAlcoa CenterUSA
  3. 3.LG Production Engineering Research CenterPyungtaek-shi, KyunggiKorea

Personalised recommendations