Journal of Bone and Mineral Metabolism

, Volume 23, Supplement 1, pp 16–22

Mechanisms by which exercise improves bone strength

Invited paper

Abstract

Certain exercises can induce osteogenesis and improve bone strength, yet the biological processes involved in bone mechanotransduction are only beginning to be understood. Several pathways are emerging from current research, including calcium signaling associated with membrane ion channels, adenosine triphosphate signaling, second messengers such as prostaglandins and nitric oxide, and signaling involving mitogen-activated protein kinase. One characteristic of the mechanosensing apparatus that has only recently been studied is the important role of desensitization. Experimental protocols that insert “rest” periods to reduce the effects of desensitization can double anabolic responses to mechanical loading. Exercises that reduce desensitization may provide an effective means to build bone strength.

Key words

Bone mineral density Calcium channel ATP Prostaglandins Nitric oxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frost HM (2003) Bone’s mechanostat: a 2003 update. Anat Rec 275A:1081–1101CrossRefGoogle Scholar
  2. 2.
    Robling AG, Hinant FM, Burr DB, Turner CH (2002) Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J Bone Miner Res 17: 1545–1554PubMedCrossRefGoogle Scholar
  3. 3.
    Forwood MR, Burr DB (1993) Physical activity and bone mass: exercises in futility? Bone Miner 21: 89–112PubMedCrossRefGoogle Scholar
  4. 4.
    Wallace BA, Cumming RG (2000) Systematic review of randomized trials of the effect of exercise on bone mass in pre-and postmenopausal women. Calcif Tissue Int 67: 10–18PubMedCrossRefGoogle Scholar
  5. 5.
    Hert J, Liskova M, Landa J (1971) Reaction of bone to mechanical stimuli. 1. Continuous and intermittent loading of the tibia in rabbit. Folia Morphol (Praha) 19: 290–300Google Scholar
  6. 6.
    Lanyon LE, Rubin CT (1984) Static vs. dynamic loads as an influence on bone remodelling. J Biomech 17: 897–905PubMedCrossRefGoogle Scholar
  7. 7.
    Robling AG, Duijvelaar KM, Geevers JV, Ohashi N, Turner CH (2001) Modulation of appositional and longitudinal bone growth in the rat ulna by applied static and dynamic force. Bone 29: 105- 113PubMedCrossRefGoogle Scholar
  8. 8.
    Turner CH, Owan I, Takano Y (1995) Mechanotransduction in bone: role of strain rate. Am J Physiol 269: E438-E442PubMedGoogle Scholar
  9. 9.
    Turner CH (1998) Three rules for bone adaptation to mechanical stimuli. Bone 23: 399–407PubMedCrossRefGoogle Scholar
  10. 10.
    Rubin CT, Lanyon LE (1984) Regulation of bone formation by applied dynamic loads. J Bone Joint Surg [Am] 66: 397–402Google Scholar
  11. 11.
    Umemura Y, Ishiko T, Yamauchi T, Kurono M, Mashiko S (1997) Five jumps per day increase bone mass and breaking force in rats. J Bone Miner Res 12: 1480–1485PubMedCrossRefGoogle Scholar
  12. 12.
    Hsieh YF, Turner CH (2001) Effects of loading frequency on mechanically induced bone formation. J Bone Miner Res 16: 918- 924PubMedCrossRefGoogle Scholar
  13. 13.
    Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K (2001) Anabolism: low mechanical signals strengthen long bones. Nature (Lond) 412: 603–604CrossRefGoogle Scholar
  14. 14.
    Li J, Duncan RL, Burr DB, Turner CH (2002) L-type calcium channels mediate mechanically induced bone formation in vivo. J Bone Miner Res 17: 1795–1800PubMedCrossRefGoogle Scholar
  15. 15.
    Reich KM, McAllister TN, Gudi S, Frangos JA (1997) Activation of G proteins mediates flow-induced prostaglandin E2 production in osteoblasts. Endocrinology 138: 1014–1018PubMedCrossRefGoogle Scholar
  16. 16.
    Robling AG, Burr DB, Turner CH (2001) Recovery periods restore mechanosensitivity to dynamically loaded bone. J Exp Biol 204: 3389–3399PubMedGoogle Scholar
  17. 17.
    Poliachik SL, Agans SC, King KA, Gross TS, Srinivasan S (2003) Rest alleviates tissue saturation due to repetitive mechanical loading. J Bone Miner Res 18 (suppl 2): S73Google Scholar
  18. 18.
    Srinivasan S, Weimer DA, Agans SC, Bain SD, Gross TS (2002) Low-magnitude mechanical loading becomes osteogenic when rest is inserted between each load cycle. J Bone Miner Res 17: 1613- 1620PubMedCrossRefGoogle Scholar
  19. 19.
    Torrance AG, Mosley JR, Suswillo RF, Lanyon LE (1994) Noninvasive loading of the rat ulna in vivo induces a strain-related modeling response uncomplicated by trauma or periosteal pressure. Calcif Tissue Int 54: 241–247PubMedCrossRefGoogle Scholar
  20. 20.
    Robling AG, Hinant FM, Burr DB, Turner CH (2002) Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J Bone Miner Res 17: 1545–1554PubMedCrossRefGoogle Scholar
  21. 21.
    Robling AG, Hinant FM, Burr DB, Turner CH (2002) Shorter, more frequent mechanical loading sessions enhance bone mass. Med Sci Sports Exerc 34: 196–202PubMedCrossRefGoogle Scholar
  22. 22.
    Chen NX, Ryder KD, Pavalko FM, Turner CH, Burr DB, Qiu J, Duncan RL (2000) Ca2* regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts. Am J Physiol Cell Physiol 278: C989-C997PubMedGoogle Scholar
  23. 23.
    Pavalko FM, Chen NX, Turner CH, Burr DB, Atkinson S, Hsieh YF, Qiu J, Duncan RL (1998) Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions. Am J Physiol 275: C1591-C1601PubMedGoogle Scholar
  24. 24.
    Hung CT, Allen FD, Pollack SR, Brighton CT(1996) Intracellular Ca2+ stores and extracellular Ca2+ are required in the real-time Ca2+ response of bone cells experiencing fluid flow. J Biomech 29: 1411–1417PubMedCrossRefGoogle Scholar
  25. 25.
    Rawlinson SC, Pitsillides AA, Lanyon LE (1996) Involvement of different ion channels in osteoblasts’ and osteocytes’ early responses to mechanical strain. Bone 19: 609–614PubMedCrossRefGoogle Scholar
  26. 26.
    Li J, Duncan RL, Burr DB, Gattone VH, Turner CH (2003) Parathyroid hormone enhances mechanically induced bone formation, possibly involving L-type voltage-sensitive calcium channels. Endocrinology 144: 1226–1233PubMedCrossRefGoogle Scholar
  27. 27.
    Ryder KD, Duncan RL (2001) Parathyroid hormone enhances fluid shear-induced [Ca2+]i signaling in osteoblastic cells through activation of mechanosensitive and voltage-sensitive Ca2+ channels. J Bone Miner Res 16: 240–248PubMedCrossRefGoogle Scholar
  28. 28.
    You J, Reilly GC, Zhen X, Yellowley CE, Chen Q, Donahue HJ, Jacobs CR (2001) Osteopontin gene regulation by oscillary fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3-E1 osteoblasts. J Biol Chem 276: 13365–13371PubMedCrossRefGoogle Scholar
  29. 29.
    Hatton JP, Pooran M, Li CF, Luzzio C, Hughes-Fulford M (2003) A short pulse of mechanical force induces gene expression and growth in MC3T3-E1 osteoblasts via an ERK 1/2 pathway. J Bone Miner Res 18: 58–66PubMedCrossRefGoogle Scholar
  30. 30.
    Jessop HL, Rawlinson SC, Pitsillides AA, Lanyon LE (2002) Mechanical strain and fluid movement both activate extracellular regulated kinase (ERK) in osteoblast-like cells but via different signaling pathways. Bone 31: 186–194PubMedCrossRefGoogle Scholar
  31. 31.
    Boutahar H, Guignandon A, Vico L, Lafage-Proust MH (2004) Mechanical strain on osteoblasts activates autophosphorylation of FAK and PYK2 tyrosine sites involved in ERK activation. J Biol Chem 279(29): 30588–30599PubMedCrossRefGoogle Scholar
  32. 32.
    Pavalko FM, Burridge K (1991) Disruption of the actin cytoskel- eton after microinjection of proteolytic fragments of alpha-actinin. J Cell Biol 114: 481–491PubMedCrossRefGoogle Scholar
  33. 33.
    You J, Jacobs CR, Steinberg TH, Donahue HJ (2002) P2Y purinoceptors are responsible for oscillatory fluid flow-induced intracellular calcium mobilization in osteoblastic cells. J Biol Chem 277: 48724–48729PubMedCrossRefGoogle Scholar
  34. 34.
    Reich KM, Gay CV, Frangos JA (1990) Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production. J Cell Physiol 143: 100–104PubMedCrossRefGoogle Scholar
  35. 35.
    Klein-Nulend J, Burger EH, Semeins CM, Raisz LG, Pilbeam CC (1997) Pulsating fluid flow stimulates prostaglandin release and inducible prostaglandin G/H synthase mRNA expression in primary mouse bone cells. J Bone Miner Res 12: 45–51PubMedCrossRefGoogle Scholar
  36. 36.
    Johnson DL, McAllister TN, Frangos JA (1996) Fluid flow stimulates rapid and continuous release of nitric oxide in osteoblasts. Am J Physiol 271: E205-E208PubMedGoogle Scholar
  37. 37.
    Pitsillides AA, Rawlinson SC, Suswillo RF, Bourrin S, Zaman G, Lanyon LE (1995) Mechanical strain-induced NO production by bone cells: a possible role in adaptive bone (re)modeling? FASEB J 9: 1614–1622PubMedGoogle Scholar
  38. 38.
    Rubin J, Biskobing D, Fan X, Rubin C, McLeod K, Taylor WR (1997) Pressure regulated osteoclast formation and MCSF expression in marrow cultures. J Cell Physiol 170: 81–87PubMedCrossRefGoogle Scholar
  39. 39.
    Rubin J, Murphy T, Nanes MS, Fan X (2000) Mechanical strain inhibits expression of osteoclast differentiation factor by murine stromal cells. Am J Physiol 278: C1126-C1132Google Scholar
  40. 40.
    Jørgensen NR, Geist ST, Civitelli R, Steinberg TH (1997) ATP- and gap junction-dependent intercellular calcium signaling in osteoblastic cells. J Cell Biol 139: 497–506PubMedCrossRefGoogle Scholar
  41. 41.
    Ke HZ, Qi H, Weidema AF, Zhang Q, Panupinthu N, Crawford DT, Grasser WA, Paralkar VM, Li M, Audoly LP, Gabei CA, Jee WS, Dixon SJ, Sims SM, Thompson DD (2003) Deletion of the P2X7 nucleotide receptor reveals its regulatory roles in bone formation and resorption. Mol Endocrinol 17: 1356–1367PubMedCrossRefGoogle Scholar
  42. 42.
    Keila S, Kelner A, Weinreb M (2001) Systemic prostaglandin E2 increases cancellous bone formation and mass in aging rats and stimulates their bone marrow osteogenic capacity in vivo and in vitro. J Endocrinol 168: 131–139PubMedCrossRefGoogle Scholar
  43. 43.
    Li XJ, Jee WS, Li YL, Patterson-Buckendahl P (1990) Transient effects of subcutaneously administered prostaglandin E2 on cancellous and cortical bone in young adult dogs. Bone 11: 353–364PubMedCrossRefGoogle Scholar
  44. 44.
    Suda M, Tanaka K, Yasoda A, Natsui K, Sakuma Y, Tanaka I, Ushikubi F, Narumiya S, Nakao K (1998) Prostaglandin E2 (PGE2) autoamplifies its production through EP1 subtype of PGE receptor in mouse osteoblastic MC3T3-E1 cells. Calcif Tissue Int 62: 327–331PubMedCrossRefGoogle Scholar
  45. 45.
    Machwate M, Harada S, Leu CT, Seedor G, Labelle M, Gallant M, Hutchins S, Lachance N, Sawyer N, Slipetz D, Metters KM, Rodan SB, Young R, Rodan GA (2001) Prostaglandin receptor EP4 mediates the bone anabolic effects of PGE2. Mol Pharmacol 60: 36–11PubMedGoogle Scholar
  46. 46.
    Cheng B, Kato Y, Zhao S, Lau J, Sprague E, Bonewald LF, Jiang JX (2001) PGE2 is essential for gap junction-mediated intercellular communication between osteocyte-like MLO-Y4 cells in response to mechanical strain. Endocrinology 142: 3463–3473Google Scholar
  47. 47.
    Civitelli R, Ziambaras K, Warlow PM, Lecanda F, Nelson T, Harley J, Atal N, Beyer EC, Steinberg TH (1998) Regulation of connexin43 expression and function by prostaglandin E2 (PGE2) and parathyroid hormone (PTH) in osteoblastic cells. J Cell Biochem 68: 8–21PubMedCrossRefGoogle Scholar
  48. 48.
    Cherian PP, Cheng B, Gu S, Sprague E, Bonewald LF, Jiang JX (2003) Effects of mechanical strain on the function of Gap junctions in osteocytes are mediated through the prostaglandin EP2 receptor. J Biol Chem 278: 43146–3156PubMedCrossRefGoogle Scholar
  49. 49.
    Pavalko FM, Gerard RL, Ponik SM, Gallagher PJ, Jin Y, Norvell SM (2003) Fluid shear stress inhibits TNF-alpha-induced apoptosis in osteoblasts: a role for fluid shear stress-induced activation of PI3-kinase and inhibition of caspase 3. J Cell Physiol 194: 194–205PubMedCrossRefGoogle Scholar
  50. 50.
    Forwood MR (1996) Inducible cyclo-oxygenase (COX-2) mediates the induction of bone formation by mechanical loading in vivo. J Bone Miner Res 11: 1688–1693PubMedCrossRefGoogle Scholar
  51. 51.
    Li J, Burr DB, Turner CH (2002) Suppression of prostaglandin synthesis with NS-398 has different effects on endocortical and periosteal bone formation induced by mechanical loading. Calcif Tissue Int 70: 320–329PubMedCrossRefGoogle Scholar
  52. 52.
    Chow JW, Fox SW, Lean JM, Chambers TJ (1999) Role of nitric oxide and prostaglandins in mechanically induced bone formation. J Bone Miner Res 13: 1039–1044CrossRefGoogle Scholar
  53. 53.
    Turner CH, Takano Y, Owan I, Murrell GA (1996) Nitric oxide inhibitor L-NAME suppresses mechanically induced bone formation in rats. Am J Physiol 270: E634-E639PubMedGoogle Scholar
  54. 54.
    Rodan GA, Bourret LA, Harvey A, Mensi T (1975) Cyclic AMP and cyclic GMP: mediators of the mechanical effects on bone remodeling. Science 189: 467–469PubMedCrossRefGoogle Scholar
  55. 55.
    Maclntyre I, Zaidi M, Alam AS, Datta HK, Moonga BS, Lidbury PS, Hecker M, Vane JR (1991) Osteoclastic inhibition: an action of nitric oxide not mediated by cyclic GMP. Proc Natl Acad Sci USA 88: 2936–2940CrossRefGoogle Scholar
  56. 56.
    Lowik CW, Nibbering PH, van de Ruit M, Papapoulos SE (1994) Inducible production of nitric oxide in osteoblast-like cells and in fetal mouse bone expiants is associated with suppression of osteoclastic bone resorption. J Clin Invest 93: 1465–1472PubMedCrossRefGoogle Scholar
  57. 57.
    Kasten TP, Collin-Osdoby P, Patel N, Osdoby P, Krukowski M, Misko TP, Settle SL, Currie MG, Nickols GA (1994) Potentiation of osteoclast bone-resorption activity by inhibition of nitric oxide synthase. Proc Natl Acad Sci U S A 91: 3569–3573PubMedCrossRefGoogle Scholar
  58. 58.
    Fan X, Roy E, Zhu L, Murphy TC, Ackert-Bicknell C, Hart CM, Rosen C, Nanes MS, Rubin J (2004) Nitric oxide regulates RANKL and OPG expression in bone marrow stromal cells. Endocrinology 145: 751–759PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Orthopaedic Research Laboratories and Biomechanics and Biomaterials Research CenterIndiana University Purdue University at IndianapolisIndianapolisUSA

Personalised recommendations