Advertisement

Metals and Materials

, Volume 5, Issue 6, pp 563–570 | Cite as

Effect of electric current heating on hot deformation resistance and microstructure of steels

  • E. I. Poliak
  • S. W. Lee
  • D. H. Seo
  • W. Y. Choo
Article

Abstract

The effect of electric current (EC) heating on the high temperature mechanical behavior and microstructure of plain carbon and austenitic stainless steels was examined using a Gleeble thermomechanical simulator. In stainless steel, EC heating is shown to reduce the flow stress, strain hardening rate, the apparent activation energy for deformation and to increase the strain rate sensitivity of the flow stress. These are accompanied by the acceleration of dynamic recrystallization and by an increase in recrystallized grain size. The EC effect is more pronounced at lower Zener-Hollomon parameters. In plain carbon steel, EC has almost no influence on flow stress. The EC heating effect on mechanical behavior and microstructure is related to deformation resistance, electric resistivity and heat conductivity of the material being tested.

Key words

electric current heating mechanical tests deformation resistance dynamic recrystallization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Spitsyn and S. A. Troitski,Electroplastic Deformation of Metals, p. 159, Nauka, Moscow (1985).Google Scholar
  2. 2.
    N. V. Pasechnik, Yu. L. Zarapin and N. A. Chichenev,Manufacturing of Precise Bands from Hard Materials by Electroplastic Deformation, p. 251, Metallurgiya, Moscow (1997).Google Scholar
  3. 3.
    S. C. Li and H. Conrad,Scripta mater. 39, 847 (1998).CrossRefGoogle Scholar
  4. 4.
    J. P. Poirier,Plasticité á Haute Température des Solides Cristallins, p. 221, Eyrolles, Paris (1976).Google Scholar
  5. 5.
    M. L. Bernstein, L. M. Kaputkina, S. D. Prokoshkin and S. V. Dobatkin,Deformation Diagrams and Structure of Steels, p. 400, Metallurgiya, Moscow (1989).Google Scholar
  6. 6.
    Y. Estrin and L. P. Kubin,Acta metall. 34, 2455 (1986).CrossRefGoogle Scholar
  7. 7.
    E. I. Poliak and J. J. Jonas,Acta mater. 44, 127 (1996).CrossRefGoogle Scholar
  8. 8.
    P. J. Wray,Metall. Trans. A 6A, 1197 (1975).ADSGoogle Scholar
  9. 9.
    C. M. Sellars,Metals Forum 3-4, 32 (1981).Google Scholar
  10. 10.
    S. L. Semiatin and J. J. Jonas,Formability and Workability of Metals. Plastic Instability and Flow Localization, p. 299, ASM, Metals Park, Ohio (1984).Google Scholar
  11. 11.
    I.Tamura, H. Sekine, T. Tanaka and C. Ouchi,Thermomechanical Processing of High-strength Low-alloy Steels, p. 86, Butterworth (1988).Google Scholar

Copyright information

© Springer 1999

Authors and Affiliations

  • E. I. Poliak
    • 1
    • 2
  • S. W. Lee
    • 1
    • 3
  • D. H. Seo
    • 1
  • W. Y. Choo
    • 1
  1. 1.Technical Research LaboratoriesPohang Iron and Steel WorksPohangKorea
  2. 2.Institute of Quality SteelsI.P.Bardin State Scientific Center for Steel IndustryMoscowRussia
  3. 3.School of Advanced Materials and Systems EngineeringKumoh National University of TechnologyKumiKorea

Personalised recommendations