The Mathematical Intelligencer

, Volume 9, Issue 2, pp 61–63 | Cite as

Years ago

  • Allen Shields
Department

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbreviations: Jrb., Zbl., and MR denote, respectively:Jahrbuch über die Fortschritte der Mathematik, Zentralblatt für Mathematik und ihre Grenzgebiete, andMathematical Reviews. Google Scholar
  2. P. S. Alexandroff and P. S. Urysohn [1929], Mémoire sur les espaces topologiques compacts, dédiéa Monsieur D. Egoroff,Kon. Akad. Weten. Amsterdam, 14, 1–96. Jrb. 552, 960-963.Google Scholar
  3. P. S. Alexandroff and H. Hopf [1935],Topologie I, Springer-Verlag, Berlin. Jrb. 611, 602–606; Zbl. 13, 79-81.CrossRefGoogle Scholar
  4. E. Čech [1937], On bicompact spaces,Ann. of Math. 38, 823–844. Jrb. 631, 570-571; Zbl. 17, 428-429.CrossRefMathSciNetGoogle Scholar
  5. Leonard Gillman and Meyer Jerison [1960],Rings of Continuous Functions, Van Nostrand, Princeton. MR 22 #6994.CrossRefMATHGoogle Scholar
  6. John L. Kelley [1957],General Topology, Van Nostrand, Princeton. MR 16, 1136. Russian edition: Obščaya topologiya, Izdat. “Nauka”, Moscow (1968). MR 39 #907.Google Scholar
  7. Matematičeskaya Entsiklopediya, Izdat. “Sovet. Entsikloped.”, Moscow, Vol. 1 (1977)-Vol. 5 (1985).Google Scholar
  8. Matematika v SSSR za sorok let (Mathematics in the USSR for forty years) 1917-1957, Gos. Izdat. Fiz.-Mat. Lit., Moscow, 1959.Google Scholar
  9. E. H. Moore and H. L. Smith [1922], A general theory of limits,Amer. J. Math. 44 (1922), 102–121. Jrb. 48, 1254.CrossRefMATHMathSciNetGoogle Scholar
  10. W. Rudin [1973], Functional Analysis, McGraw-Hill, New York.MATHGoogle Scholar
  11. M. H. Stone [1936], The theory of representations for Boolean algebras,Trans. Amer. Math. Soc. 40, 37–111. Jrb. 621, 33-34; Zbl. 14, 340.MathSciNetGoogle Scholar
  12. —[1937], Applications of the theory of Boolean rings to general topology,Trans. Amer. Math. Soc. 41, 375–481. Jrb. 631, 1173; Zbl. 17, 135.CrossRefMathSciNetGoogle Scholar
  13. —[19481], On the compactification of topological spaces,Ann. Soc. Polon. Math. 21, 153–160. MR 10, 137.MATHMathSciNetGoogle Scholar
  14. —[19482], The generalized Weierstrass approximation theorem,Math. Mag. 21, 167–184, 237-254. MR 10, 255.CrossRefMathSciNetGoogle Scholar
  15. A. N. Tychonoff [1929], Über die topologische Erweiterung von Räumen,Math. Ann. 102, 544–561. Jrb. 552, 963.CrossRefMATHMathSciNetGoogle Scholar
  16. —[19351], Über einen Funktionenraum,Math. Ann. 111, 762–766. Jrb. 612, 1194-1195; Zbl. 12, 308.CrossRefMathSciNetGoogle Scholar
  17. —[19352], Ein Fixpunktsatz,Math. Ann. 111, 767–776, Jrb. 612, 1195; Zbl. 12, 308.CrossRefMathSciNetGoogle Scholar
  18. P. S. Urysohn [1925], Zum Metrisationsproblem,Math. Ann. 94, 309–315. Jrb. 51, 453.CrossRefMATHMathSciNetGoogle Scholar
  19. K. Weierstrass [1885], Über die analytische Darstellbarkeit sogenannter willkürlicher Functionen einer reellen Veränderlichen, Sitz, Berichte Kön. Preuss. Akad. Wiss., Berlin (1885), 633–639 and 789-805. Jrb. 17 (1885), 384-388.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 1987

Authors and Affiliations

  • Allen Shields
    • 1
  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations