Advertisement

The Mathematical Intelligencer

, Volume 9, Issue 2, pp 61–63 | Cite as

Years ago

  • Allen Shields
Department

Keywords

General Topology Logical Space Compact Hausdorff Space Regular Space Continuous Real Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbreviations: Jrb., Zbl., and MR denote, respectively:Jahrbuch über die Fortschritte der Mathematik, Zentralblatt für Mathematik und ihre Grenzgebiete, andMathematical Reviews. Google Scholar
  2. P. S. Alexandroff and P. S. Urysohn [1929], Mémoire sur les espaces topologiques compacts, dédiéa Monsieur D. Egoroff,Kon. Akad. Weten. Amsterdam, 14, 1–96. Jrb. 552, 960-963.Google Scholar
  3. P. S. Alexandroff and H. Hopf [1935],Topologie I, Springer-Verlag, Berlin. Jrb. 611, 602–606; Zbl. 13, 79-81.CrossRefGoogle Scholar
  4. E. Čech [1937], On bicompact spaces,Ann. of Math. 38, 823–844. Jrb. 631, 570-571; Zbl. 17, 428-429.CrossRefMathSciNetGoogle Scholar
  5. Leonard Gillman and Meyer Jerison [1960],Rings of Continuous Functions, Van Nostrand, Princeton. MR 22 #6994.CrossRefzbMATHGoogle Scholar
  6. John L. Kelley [1957],General Topology, Van Nostrand, Princeton. MR 16, 1136. Russian edition: Obščaya topologiya, Izdat. “Nauka”, Moscow (1968). MR 39 #907.Google Scholar
  7. Matematičeskaya Entsiklopediya, Izdat. “Sovet. Entsikloped.”, Moscow, Vol. 1 (1977)-Vol. 5 (1985).Google Scholar
  8. Matematika v SSSR za sorok let (Mathematics in the USSR for forty years) 1917-1957, Gos. Izdat. Fiz.-Mat. Lit., Moscow, 1959.Google Scholar
  9. E. H. Moore and H. L. Smith [1922], A general theory of limits,Amer. J. Math. 44 (1922), 102–121. Jrb. 48, 1254.CrossRefzbMATHMathSciNetGoogle Scholar
  10. W. Rudin [1973], Functional Analysis, McGraw-Hill, New York.zbMATHGoogle Scholar
  11. M. H. Stone [1936], The theory of representations for Boolean algebras,Trans. Amer. Math. Soc. 40, 37–111. Jrb. 621, 33-34; Zbl. 14, 340.MathSciNetGoogle Scholar
  12. —[1937], Applications of the theory of Boolean rings to general topology,Trans. Amer. Math. Soc. 41, 375–481. Jrb. 631, 1173; Zbl. 17, 135.CrossRefMathSciNetGoogle Scholar
  13. —[19481], On the compactification of topological spaces,Ann. Soc. Polon. Math. 21, 153–160. MR 10, 137.zbMATHMathSciNetGoogle Scholar
  14. —[19482], The generalized Weierstrass approximation theorem,Math. Mag. 21, 167–184, 237-254. MR 10, 255.CrossRefMathSciNetGoogle Scholar
  15. A. N. Tychonoff [1929], Über die topologische Erweiterung von Räumen,Math. Ann. 102, 544–561. Jrb. 552, 963.CrossRefzbMATHMathSciNetGoogle Scholar
  16. —[19351], Über einen Funktionenraum,Math. Ann. 111, 762–766. Jrb. 612, 1194-1195; Zbl. 12, 308.CrossRefMathSciNetGoogle Scholar
  17. —[19352], Ein Fixpunktsatz,Math. Ann. 111, 767–776, Jrb. 612, 1195; Zbl. 12, 308.CrossRefMathSciNetGoogle Scholar
  18. P. S. Urysohn [1925], Zum Metrisationsproblem,Math. Ann. 94, 309–315. Jrb. 51, 453.CrossRefzbMATHMathSciNetGoogle Scholar
  19. K. Weierstrass [1885], Über die analytische Darstellbarkeit sogenannter willkürlicher Functionen einer reellen Veränderlichen, Sitz, Berichte Kön. Preuss. Akad. Wiss., Berlin (1885), 633–639 and 789-805. Jrb. 17 (1885), 384-388.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 1987

Authors and Affiliations

  • Allen Shields
    • 1
  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations