The Mathematical Intelligencer

, Volume 11, Issue 4, pp 34–37 | Cite as

When is a C function analytic?

  • R. P. Boas


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. P. Boas, A theorem on analytic functions of a real variable,Bull. Amer. Math. Soc. 41 (1935), 233–236.CrossRefMathSciNetGoogle Scholar
  2. 2.
    A. Boghossian and P. D. Johnson, Jr., Pointwise conditons for analyticity and polynomiality of infinitely differentiable functions,J. Math. Analysis and Appl. 140 (1989), 301–309.CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    M. J. Hoffman and R. Katz, The sequence of derivatives of a C∞-function,Amer. Math. Monthly 90 (1983), 557–560.CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    P. Kolar and J. Fischer, On the validity and practical applicability of derivative analyticity relations,J. Math. Phys. 25 (1984), 2538–2544.CrossRefMathSciNetGoogle Scholar
  5. 5.
    W. F. Osgood,Lehrbuch der Funktionentheorie, vol. I, 5th. ed., Leipzig and Berlin: Teubner (1928).Google Scholar
  6. 6.
    A. Pringsheim, Zur Theorie der Taylor’schen Reihe und der analytischen Funktionen mit beschränktem Existenzbereich,Math. Ann. 42 (1893), 153–184.CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    H. Salzmann and K. Zeller, Singularitäten unendlich oft differenzierbarer Funktionen,Math. Z. 62 (1955), 354–367.CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    I. Vrkoc, Holomorphic extension of a function whose odd derivatives are summable,Czechoslovak Math. J. 35(110) (1985), 59–65.MathSciNetGoogle Scholar
  9. 9.
    Z. Zahorski, Sur l’ensemble des points singuliers d’une fonction d’une variable réelle admettant les dérivées de tous les ordres,Fund. Math. 34 (1947), 183–245; supplement,ibid. 36 (1949), 319–320.MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1989

Authors and Affiliations

  • R. P. Boas
    • 1
  1. 1.Department of MathematicsNorthwestern UniversityEvanstonUSA

Personalised recommendations