The Mathematical Intelligencer

, Volume 8, Issue 3, pp 58–62

The evidence

Primality Testing
  • Stan Wagon
Department

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eric Bach (1985)Analytic Methods in the Analysis and Design of Number-Theoretic Algorithms, ACM Distinguished Dissertations, Cambridge: MIT Press.MATHGoogle Scholar
  2. 2.
    H. Cohen and H. W. Lenstra, Jr. (1984) Primality testing and Jacobi sums,Mathematics of Computation, 42, pp. 297–330.CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Martin Davis (1973) Hilbert’s Tenth Problem is unsolvable,American Mathematical Monthly, 80, pp. 233–269.CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    John Dixon (1984) Factorization and primality tests,American Mathematical Monthly, 91, pp. 333–352.CrossRefMATHGoogle Scholar
  5. 5.
    A. K. Head (1980) Multiplication modulon, BIT, 20, pp. 115–116.CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    James P. Jones (1982) Universal Diophantine equation,Journal of Symbolic Logic, 47, pp. 549–571.CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    D. H. Lehmer, Emma Lehmer and Daniel Shanks (1970) Integer sequences having prescribed quadratic character,Mathematics of Computation, 24, pp. 433–451.MATHMathSciNetGoogle Scholar
  8. 8.
    H. W. Lenstra (1979) Miller’s primality test,Information Processing Letters, 8, pp. 86–88.CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Gary Miller (1976) Riemann’s Hypothesis and tests for primality,Journal of Computer and System Sciences, 13, pp. 300–317.CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Jean Louis Nicolas (1984) Tests de primalité,Expositiones Mathematicae, 2, pp. 223–234.MATHMathSciNetGoogle Scholar
  11. 11.
    Carl Pomerance (1981) Recent developments in primality testing,The Mathematical Intelligencer, 3, pp. 97–105.CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Carl Pomerance (1981) The distribution of pseudoprimes,Mathematics of Computation, 37, pp. 587–593.CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Carl Pomerance, J. L. Selfridge and Samuel S. Wagstaff, Jr. (1980) The pseudoprimes to 25 · 109,Mathematics of Computation, 35, pp. 1003–1026.MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag New York 1986

Authors and Affiliations

  • Stan Wagon

There are no affiliations available

Personalised recommendations