Mathematische Zeitschrift

, Volume 213, Issue 1, pp 65–73 | Cite as

A pseudoconvex domain with bounded solutions for\(\bar \partial \), but not admittingC

  • Joachim Michel
Article
  • 26 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berndtsson, B.: A smooth pseudoconvex domain in C2 for whichL -estimates for\(\bar \partial \) do not hold. (Preprint)Google Scholar
  2. 2.
    Bertrams, J.: Das\(\bar \partial \)-Problem auf pseudokonvexen Polyedern nach Sergeev und Henkin. Bonn. Math. Schr.167, Bonn (1985)Google Scholar
  3. 3.
    Bertrams, J.: Randregularität von Lösungen der\(\bar \partial \)-Gleichung auf dem Polyzylinder und zweidimensionalen analytischen Polyedern. Bonn. Math Schr.176, Bonn (1986)Google Scholar
  4. 4.
    Chaumat, J., Chollet, A.-M.: Régularité holderienne de l'operateur\(\bar \partial \) sur le triangle de Hartogs. Ann. Inst. Fourier, Grenoble41, 4, 867–882 (1991)MATHMathSciNetGoogle Scholar
  5. 5.
    Lan Ma, Michel, J.:C{suk+\ga}-estimates for the\(\bar \partial \)-equation on the Hartogs triangle. Math. Ann.294, 661–675 (1992)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Sibony, N.: Un example de domaine pseudoconvexe regulier ou l'equation\(\bar \partial u = f\) n'admet pas de solution bornée pourf bornée. Invent. Math.62, 235–242 (1980)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Joachim Michel
    • 1
  1. 1.Mathematisches Institut der UniversitätBonn 1Germany

Personalised recommendations