What is ancient mathematics?
Article
First Online:
- 233 Downloads
- 1 Citations
Keywords
Mathematical Intelligencer Initial Line Modern Notation Loeb Classical Library Ancient Mathematics
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [1]A. Aaboe and J. L. Berggren,Didactical and other remarks on some theorems of Archimedes and infinitesimals, Centaurus 38 (1996), 295–316.CrossRefzbMATHMathSciNetGoogle Scholar
- [2]K. Andersen,Cavalieri’s method of indivisibles, Arch. Hist. Exact. Sci. 31 (1985), 291–367.zbMATHMathSciNetGoogle Scholar
- [3]T. Apostoi,Calculus, vol. I, 2nd Edition, John Wiley & Sons, New York, 1967.Google Scholar
- [4]I. Asimov,How did we Find out that the Earth is Round?, Walker &Co., New York 1972.Google Scholar
- [5]I. Asimov,Asimov’s new Guide to Science, Basic Books, New York 1984.[Google Scholar
- 6]Archimedes,The Works of Archimedes, edited in modern notation with introductory chapters by T.L. Heath. With a supplement,The method of Archimedes, recently discovered by Heiberg, Dover, New York, 1953. Reprinted (translation only) in [36].Google Scholar
- [7]Archimedes,Opera Omnia, IV vol., cum commentariis Eutocii, iterum edidit I.L Heiberg, corrigenda adiecit E.S. Stamatis, B.G. Teubner, Stuttgart, 1972.Google Scholar
- [8]Archimède,Oeuvres, 4 vol., texte établi et traduit par C. Mugler, Les Belles Lettres, Paris, 1970–72.Google Scholar
- [9]M. Balme and G. Lawall,Athenaze, An Introduction to Ancient Greek, 2 vols., Oxford University Press, New York, 1990.Google Scholar
- [10]A. Avron,On strict constructibility with a compass alone, J. Geometry 38 (1990), 12–15.CrossRefzbMATHMathSciNetGoogle Scholar
- [11]ET. Bell,Men of Mathematics, Simon and Schuster, New York, 1937.zbMATHGoogle Scholar
- [12]L. Bers,Calculus, vol. I, Holt, Rinehart and Winston, New York, 1969.Google Scholar
- [13]L. Bieberbach (1886–1982),Theorie der geometrischen Konstruktionen, Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften, Mathematische Reihe, Band 13, Verlag Birkhäuser, Basel, 1952.Google Scholar
- [14]Cleomedes (circa 150 B.C.), DeMotu Circulari Corporum Caelestium, 2 vols., H. Ziegler, editor, Teubner, Leipzig 1891. See [32, p. 106] [43] [54, Vol. 2, p. 267].Google Scholar
- [15]H.S.M. Coxeter,Introduction to Geometry, John Wiley & Sons, New York, 1989.Google Scholar
- [16]H.T. Croft, K.J. Falconer, and R.K. Guy,Unsolved Problems in Geometry, Springer-Verlag, New York 1991.CrossRefzbMATHGoogle Scholar
- [17]P.J. Davis,The rise, fall, and possible transfiguration of triangle geometry: A mini history, Amer. Math. Monthly 102 (1995), 204–214.CrossRefzbMATHMathSciNetGoogle Scholar
- [18]E.J. Eijksterhuis,Archimedes, Princeton University Press, Princeton 1987Google Scholar
- [19]M. Djoric and L. Vanhecke,A Theorem of Archimedes about spheres and cylinders and two-point homogeneous spaces, Bull. Austral. Math. Soc. 43 (1991), 283–294.CrossRefzbMATHMathSciNetGoogle Scholar
- [20]U. Dudley,A budget of trisections, Springer-Verlag, New York, 1987.CrossRefzbMATHGoogle Scholar
- [21]C.H. Edwards,The Historical Development of the Calculus, Springer-Verlag, New York, 1979.CrossRefzbMATHGoogle Scholar
- [22]C.H. Edwards and D.E. Penney,Calculus and Analytic Geometry, second edition, Prentice Hall, Englewood Cliffs, NJ, 1988.Google Scholar
- [23]Euclid,The Thirteen Books of Euclid’s Elements, translated with introduction and commentary by T.L. Heath, Dover 1956.Google Scholar
- [24]D.H. Fowler,The Mathematics of Plato’s Academy: a New Reconstruction, Clarendon Press, Oxford 1990.Google Scholar
- [25]S.H. Gould,The Method of Archimedes, Amer. Math. Monthly 62 (1955), 473–476.CrossRefzbMATHMathSciNetGoogle Scholar
- [26]R.M. Green,Spherical Astronomy, Cambridge University Press, Cambridge 1985.Google Scholar
- [27]J. Hadamard (1865–1963),Leçons de géométrie élémentaire, 2 vols., A. Colin, Paris, 1937.Google Scholar
- [28]D. Hammett,The Maltese Falcon, Penguin, Middlesex, 1930.Google Scholar
- [29]E. Hayashi,A reconstruction of the proof of Proposition 11 in Archimedes method, Historia Sci. 3 (1994), 215–230.zbMATHMathSciNetGoogle Scholar
- [30]G.H. Hardy (1877–1947),A Mathematician’s Apology, Cambridge University Press, New York, 1985.Google Scholar
- [31]R. Hartshorne,A Companion to Euclid, a course of geometry based on Euclid’s Elements and its modern descendents, AMS, Berkeley Center for Pure and Applied Mathematics, 1997.Google Scholar
- [32]T. Heath,A History of Greek Mathematics, vol. II, Dover, New York, 1981.Google Scholar
- [33]I.L. Heiberg,Eine neue Archimedes-Handschrift, Hermes 42 (1907), p. 235.Google Scholar
- [34]H.L.F. von Helmholtz,Helmholtz treatise on physiological optics, translated from the 3d German ed., edited by J.P.C. Southall, Dover, New York, 1962.Google Scholar
- [35]D. Hughes-Hallett, A.M. Gleason, et al.,Calculus, John Wiley & Sons, New York, 1994. Second edition, 1998.Google Scholar
- [36]Great Books of the Western World, vol. 11, R.M. Hutchins, editor, Encyclopaedia Britannica, Inc., Chicago, 1952.Google Scholar
- [37]G. Johnson,The Big Question: Does the Universe Follow Mathematical Law? The New York Times, February 10, 1998.Google Scholar
- [38]F. Klein (1849–1925),Elementary Mathematics from an Advanced Viewpoint, 2 vols, Macmillan, New York, 1939.Google Scholar
- [39]W.R. Knorr,The evolution of the Euclidean elements, Synthese Historical Library 15, D. Reidel, Dordrecht-Boston, MA, 1975.Google Scholar
- [40]W.R. Knorr,Archimedes and the Spirals: The Heuristic Background, Historia Math. 5 (1978), 43–75.CrossRefzbMATHMathSciNetGoogle Scholar
- [41]W.R. Knorr,The Ancient Tradition of Geometric Problems, Birkhäuser, Boston, 1986.Google Scholar
- [42]W.R. Knorr,The method of indivisibles in ancient geometry, in “Vita mathematics” (Toronto, ON, 1992; Quebec City, PQ, 1992), 67–86, MAA Notes 40, Math. Assoc. America, Washington, DC, 1996.Google Scholar
- [43]K. Lasky, The Librarian who Measured the Earth, Little, Brown & Co., Boston 1994.Google Scholar
- [44]H. Lebesgue,Leçons sur les constructions géométriques, Gauthier- Villars, Paris, 1950. Reissued, Jacques Gabay, Paris, 1987.zbMATHGoogle Scholar
- [45]E. Moise,Elementary Geometry from an Advanced Viewpoint, Addison-Wesley, Reading, MA, 1974.Google Scholar
- [46]R. Netz, personal communication.Google Scholar
- [47]Nicomachus of Gerasa (circa 100 A.D.),Introduction to Arithmetic, translated by M.L D’Ooge, in [36]. See [54, Vol. 1, p. 101].Google Scholar
- [48]Pappus,La Collection Mathématique, traduit avec une introduction et notes par P. Ver Ecke, Desclée de Brouwer, Paris, 1933.Google Scholar
- [49]Plutarch,Lives, vol. 5, translated by B. Perrin, Loeb Classical Library 87, Harvard University Press, Cambridge, MA, 1917. Also, translated by John Dryden (1631–1700), http://www.oed.com/ plutarch.html.Google Scholar
- [50]A. Selberg,Collected Works, 2 vols, Springer Verlag, New York, 1989, 1991.Google Scholar
- [51]G.F. Simmons,Calculus with Analytic Geometry, McGraw Hill, New York, 1985.Google Scholar
- [52]H.M. Stark,On the “gap” in a theorem of Heegner, J. Number Theory 1 (1969), 16–27.CrossRefzbMATHMathSciNetGoogle Scholar
- [53]H. Swann,Commentary on rethinking rigor in calculus: The role of the mean value theorem, Amer. Math. Monthly 104 (1997), 241–245.CrossRefzbMATHMathSciNetGoogle Scholar
- [54]I. Thomas,Greek Mathematical Works, 2 vol., Loeb Classical Library 335, 362, Harvard University Press, Cambridge, MA, 1980.Google Scholar
- [55]G. Toussaint,A new look at Euclid’s second proposition, Math. Intelligencer15 (1993), 12–23.CrossRefzbMATHMathSciNetGoogle Scholar
- [56]I. Vardi,A classical reeducation, in preparation.Google Scholar
- [57]I. Vardi, APXIMHΔOΥΣ ΠEPI TΩN EΛIKΩN EΦOΔOΣ, in preparation.Google Scholar
- [58]B.L. van der Waerden,Science Awakening I, Scholar’s Bookshelf Press, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1988.Google Scholar
- [59]A. Wiles,Modular elliptic curves and Fermat’s last theorem, Ann. of Math. 141 (1995), 443–551CrossRefzbMATHMathSciNetGoogle Scholar
Copyright information
© Springer Science+Business Media, Inc. 1999