The Mathematical Intelligencer

, Volume 21, Issue 3, pp 38–47 | Cite as

What is ancient mathematics?

  • Ilan VardiEmail author


Mathematical Intelligencer Initial Line Modern Notation Loeb Classical Library Ancient Mathematics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Aaboe and J. L. Berggren,Didactical and other remarks on some theorems of Archimedes and infinitesimals, Centaurus 38 (1996), 295–316.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    K. Andersen,Cavalieri’s method of indivisibles, Arch. Hist. Exact. Sci. 31 (1985), 291–367.zbMATHMathSciNetGoogle Scholar
  3. [3]
    T. Apostoi,Calculus, vol. I, 2nd Edition, John Wiley & Sons, New York, 1967.Google Scholar
  4. [4]
    I. Asimov,How did we Find out that the Earth is Round?, Walker &Co., New York 1972.Google Scholar
  5. [5]
    I. Asimov,Asimov’s new Guide to Science, Basic Books, New York 1984.[Google Scholar
  6. 6]
    Archimedes,The Works of Archimedes, edited in modern notation with introductory chapters by T.L. Heath. With a supplement,The method of Archimedes, recently discovered by Heiberg, Dover, New York, 1953. Reprinted (translation only) in [36].Google Scholar
  7. [7]
    Archimedes,Opera Omnia, IV vol., cum commentariis Eutocii, iterum edidit I.L Heiberg, corrigenda adiecit E.S. Stamatis, B.G. Teubner, Stuttgart, 1972.Google Scholar
  8. [8]
    Archimède,Oeuvres, 4 vol., texte établi et traduit par C. Mugler, Les Belles Lettres, Paris, 1970–72.Google Scholar
  9. [9]
    M. Balme and G. Lawall,Athenaze, An Introduction to Ancient Greek, 2 vols., Oxford University Press, New York, 1990.Google Scholar
  10. [10]
    A. Avron,On strict constructibility with a compass alone, J. Geometry 38 (1990), 12–15.CrossRefzbMATHMathSciNetGoogle Scholar
  11. [11]
    ET. Bell,Men of Mathematics, Simon and Schuster, New York, 1937.zbMATHGoogle Scholar
  12. [12]
    L. Bers,Calculus, vol. I, Holt, Rinehart and Winston, New York, 1969.Google Scholar
  13. [13]
    L. Bieberbach (1886–1982),Theorie der geometrischen Konstruktionen, Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften, Mathematische Reihe, Band 13, Verlag Birkhäuser, Basel, 1952.Google Scholar
  14. [14]
    Cleomedes (circa 150 B.C.), DeMotu Circulari Corporum Caelestium, 2 vols., H. Ziegler, editor, Teubner, Leipzig 1891. See [32, p. 106] [43] [54, Vol. 2, p. 267].Google Scholar
  15. [15]
    H.S.M. Coxeter,Introduction to Geometry, John Wiley & Sons, New York, 1989.Google Scholar
  16. [16]
    H.T. Croft, K.J. Falconer, and R.K. Guy,Unsolved Problems in Geometry, Springer-Verlag, New York 1991.CrossRefzbMATHGoogle Scholar
  17. [17]
    P.J. Davis,The rise, fall, and possible transfiguration of triangle geometry: A mini history, Amer. Math. Monthly 102 (1995), 204–214.CrossRefzbMATHMathSciNetGoogle Scholar
  18. [18]
    E.J. Eijksterhuis,Archimedes, Princeton University Press, Princeton 1987Google Scholar
  19. [19]
    M. Djoric and L. Vanhecke,A Theorem of Archimedes about spheres and cylinders and two-point homogeneous spaces, Bull. Austral. Math. Soc. 43 (1991), 283–294.CrossRefzbMATHMathSciNetGoogle Scholar
  20. [20]
    U. Dudley,A budget of trisections, Springer-Verlag, New York, 1987.CrossRefzbMATHGoogle Scholar
  21. [21]
    C.H. Edwards,The Historical Development of the Calculus, Springer-Verlag, New York, 1979.CrossRefzbMATHGoogle Scholar
  22. [22]
    C.H. Edwards and D.E. Penney,Calculus and Analytic Geometry, second edition, Prentice Hall, Englewood Cliffs, NJ, 1988.Google Scholar
  23. [23]
    Euclid,The Thirteen Books of Euclid’s Elements, translated with introduction and commentary by T.L. Heath, Dover 1956.Google Scholar
  24. [24]
    D.H. Fowler,The Mathematics of Plato’s Academy: a New Reconstruction, Clarendon Press, Oxford 1990.Google Scholar
  25. [25]
    S.H. Gould,The Method of Archimedes, Amer. Math. Monthly 62 (1955), 473–476.CrossRefzbMATHMathSciNetGoogle Scholar
  26. [26]
    R.M. Green,Spherical Astronomy, Cambridge University Press, Cambridge 1985.Google Scholar
  27. [27]
    J. Hadamard (1865–1963),Leçons de géométrie élémentaire, 2 vols., A. Colin, Paris, 1937.Google Scholar
  28. [28]
    D. Hammett,The Maltese Falcon, Penguin, Middlesex, 1930.Google Scholar
  29. [29]
    E. Hayashi,A reconstruction of the proof of Proposition 11 in Archimedes method, Historia Sci. 3 (1994), 215–230.zbMATHMathSciNetGoogle Scholar
  30. [30]
    G.H. Hardy (1877–1947),A Mathematician’s Apology, Cambridge University Press, New York, 1985.Google Scholar
  31. [31]
    R. Hartshorne,A Companion to Euclid, a course of geometry based on Euclid’s Elements and its modern descendents, AMS, Berkeley Center for Pure and Applied Mathematics, 1997.Google Scholar
  32. [32]
    T. Heath,A History of Greek Mathematics, vol. II, Dover, New York, 1981.Google Scholar
  33. [33]
    I.L. Heiberg,Eine neue Archimedes-Handschrift, Hermes 42 (1907), p. 235.Google Scholar
  34. [34]
    H.L.F. von Helmholtz,Helmholtz treatise on physiological optics, translated from the 3d German ed., edited by J.P.C. Southall, Dover, New York, 1962.Google Scholar
  35. [35]
    D. Hughes-Hallett, A.M. Gleason, et al.,Calculus, John Wiley & Sons, New York, 1994. Second edition, 1998.Google Scholar
  36. [36]
    Great Books of the Western World, vol. 11, R.M. Hutchins, editor, Encyclopaedia Britannica, Inc., Chicago, 1952.Google Scholar
  37. [37]
    G. Johnson,The Big Question: Does the Universe Follow Mathematical Law? The New York Times, February 10, 1998.Google Scholar
  38. [38]
    F. Klein (1849–1925),Elementary Mathematics from an Advanced Viewpoint, 2 vols, Macmillan, New York, 1939.Google Scholar
  39. [39]
    W.R. Knorr,The evolution of the Euclidean elements, Synthese Historical Library 15, D. Reidel, Dordrecht-Boston, MA, 1975.Google Scholar
  40. [40]
    W.R. Knorr,Archimedes and the Spirals: The Heuristic Background, Historia Math. 5 (1978), 43–75.CrossRefzbMATHMathSciNetGoogle Scholar
  41. [41]
    W.R. Knorr,The Ancient Tradition of Geometric Problems, Birkhäuser, Boston, 1986.Google Scholar
  42. [42]
    W.R. Knorr,The method of indivisibles in ancient geometry, in “Vita mathematics” (Toronto, ON, 1992; Quebec City, PQ, 1992), 67–86, MAA Notes 40, Math. Assoc. America, Washington, DC, 1996.Google Scholar
  43. [43]
    K. Lasky, The Librarian who Measured the Earth, Little, Brown & Co., Boston 1994.Google Scholar
  44. [44]
    H. Lebesgue,Leçons sur les constructions géométriques, Gauthier- Villars, Paris, 1950. Reissued, Jacques Gabay, Paris, 1987.zbMATHGoogle Scholar
  45. [45]
    E. Moise,Elementary Geometry from an Advanced Viewpoint, Addison-Wesley, Reading, MA, 1974.Google Scholar
  46. [46]
    R. Netz, personal communication.Google Scholar
  47. [47]
    Nicomachus of Gerasa (circa 100 A.D.),Introduction to Arithmetic, translated by M.L D’Ooge, in [36]. See [54, Vol. 1, p. 101].Google Scholar
  48. [48]
    Pappus,La Collection Mathématique, traduit avec une introduction et notes par P. Ver Ecke, Desclée de Brouwer, Paris, 1933.Google Scholar
  49. [49]
    Plutarch,Lives, vol. 5, translated by B. Perrin, Loeb Classical Library 87, Harvard University Press, Cambridge, MA, 1917. Also, translated by John Dryden (1631–1700), plutarch.html.Google Scholar
  50. [50]
    A. Selberg,Collected Works, 2 vols, Springer Verlag, New York, 1989, 1991.Google Scholar
  51. [51]
    G.F. Simmons,Calculus with Analytic Geometry, McGraw Hill, New York, 1985.Google Scholar
  52. [52]
    H.M. Stark,On the “gap” in a theorem of Heegner, J. Number Theory 1 (1969), 16–27.CrossRefzbMATHMathSciNetGoogle Scholar
  53. [53]
    H. Swann,Commentary on rethinking rigor in calculus: The role of the mean value theorem, Amer. Math. Monthly 104 (1997), 241–245.CrossRefzbMATHMathSciNetGoogle Scholar
  54. [54]
    I. Thomas,Greek Mathematical Works, 2 vol., Loeb Classical Library 335, 362, Harvard University Press, Cambridge, MA, 1980.Google Scholar
  55. [55]
    G. Toussaint,A new look at Euclid’s second proposition, Math. Intelligencer15 (1993), 12–23.CrossRefzbMATHMathSciNetGoogle Scholar
  56. [56]
    I. Vardi,A classical reeducation, in preparation.Google Scholar
  57. [57]
    I. Vardi, APXIMHΔOΥΣ ΠEPI TΩN EΛIKΩN EΦOΔOΣ, in preparation.Google Scholar
  58. [58]
    B.L. van der Waerden,Science Awakening I, Scholar’s Bookshelf Press, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1988.Google Scholar
  59. [59]
    A. Wiles,Modular elliptic curves and Fermat’s last theorem, Ann. of Math. 141 (1995), 443–551CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1999

Authors and Affiliations

  1. 1.Bures-sur-YvetteFrance

Personalised recommendations