The Mathematical Intelligencer

, Volume 21, Issue 4, pp 18–29 | Cite as

The shift equivalence problem



Periodic Point Mathematical Intelligencer Finite Type Cyclic Homology Strong Shift 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    R.L. Adler, “The torus and the disk,”IBM J. Res. Dev. 31 (2) (1987), 224–234.CrossRefGoogle Scholar
  2. [AKM]
    R.L. Adler, A. Konheim, and M. McAndrew, “Topological entropy,”TAMS 114 (1965), 309–319.CrossRefMATHMathSciNetGoogle Scholar
  3. [B]
    K. Baker, “Strong shift equivalence of 2 x 2 matrices of non-negative integers,”ETDS, 3 (1983), 501–508.MATHGoogle Scholar
  4. [Bow]
    R. Bowen, “Markov partitions for Axiom A diffeomorphisms,”Amer. J. Math. 92 (1970), 725–747.CrossRefMATHMathSciNetGoogle Scholar
  5. [Bo]
    M. Boyle, “The stochastic shift equivalence conjecture is false,”Contemp. Math. 135 (1992), 107–110.CrossRefMathSciNetGoogle Scholar
  6. [BF]
    M. Boyle and U. Fiebig, “The action of inert finite order automorphisms on finite subsystems,“ETDS 11 (1991), 413–425.MathSciNetGoogle Scholar
  7. [BH1]
    M. Boyle and D. Handelman, “Algebraic shift equivalence and primitive matrices,”Trans. AMS 336(1) (1993), 121–149.CrossRefMATHMathSciNetGoogle Scholar
  8. [BH2]
    — and D., “The spectra of nonnegative matrices via symbolic dynamics,”Ann. Math. 133 (1991), 249–316.CrossRefMATHGoogle Scholar
  9. [BK1]
    M. Boyle and W. Krieger, “Periodic points and automorphisms of the shift,”Trans. AMS 302 (1987), 125–149.CrossRefMATHMathSciNetGoogle Scholar
  10. [BK2]
    — and D.;, “Automorphisms and subsystems of the shift,“J. Reine Angew. Math. 437 (1993), 13–28.MATHMathSciNetGoogle Scholar
  11. [BLR]
    M. Boyle, D. Lind, and D. Rudolph, “The automorphism group of a shift of finite type,”Trans. AMS 306 (1988), 71–114.CrossRefMATHMathSciNetGoogle Scholar
  12. [BMT]
    M. Boyle, B. Marcus, and P. Trow,Resolving Maps and the Dimension Group for Shifts of Finite Type, Mem. Amer. Math. Soc. Vol.70 3 (1987), Number 377, American Mathematical Society, Providence, Rl.Google Scholar
  13. [BW]
    M. Boyle and J.B. Wagoner, Nonnegative algebraic K-theory and subshifts of finite type, in preparation.Google Scholar
  14. [BaW]
    L. Badoian and J.B. Wagoner, “Simple connectivity of the Markov partition space,” preprint, UC Berkeley (1998),Pac. J. Math, (in press).Google Scholar
  15. [C]
    J. Cerf, “La stratification naturelle des espaces de fonctions dif- férentiables réelles et le théorè me de la pseudo-isotopie,”Publ. Math. IHES, 39 (1970), 5–173.CrossRefMATHMathSciNetGoogle Scholar
  16. [CK1]
    J. Cuntz and W. Krieger, “Topological Markov chains and dycyclic dimension groups,”J. Reine Angew. Math. 320 (1980), 44–51.MATHMathSciNetGoogle Scholar
  17. ba][CK2]
    — and W. Krieger, “A class of C*-Algebras and topological Markov chains,”Inventi. Math. 56 (1980), 251–268.CrossRefMATHMathSciNetGoogle Scholar
  18. [E]
    E.G. Effros, Dimensions and C*-Algebras, CBMS No. 46, American Mathematical Society, Providence, Rl 1981.Google Scholar
  19. [F]
    U. Fiebig, “Gyration numbers for involutions of subshifts of finite type I,”Forum Math. 4, (1992), 77–108; “Gyration numbers for involutions of subshifts of finite type //,Forum Math. 4 (1992), 183-211.CrossRefMATHMathSciNetGoogle Scholar
  20. [Fr]
    J. Franks,Homology and Dynamical Systems, CBMS No. 49, American Mathematical Society, Providence, Rl, 1982.Google Scholar
  21. [G]
    P.M. Gilmer, “Topological quantum field theory and strong shift equivalence,” preprint, Louisiana State University (1997), Bull. Canadian Math. Soc. (in press).Google Scholar
  22. [H]
    G. Hedlund, “Endomorphisms and automorphisms of shift dynamical systems,”Math. Syst. Theory 3 (1969), 320–375.CrossRefMATHMathSciNetGoogle Scholar
  23. [HW]
    A. Hatcher and J.B. Wagoner,Pseudo Isotopies of Compact Manifolds, Astérisque No. 6, Société Mathématique de France, 1973.Google Scholar
  24. [K]
    B. Kitchens,Symbolic Dynamics, Springer-Verlag, New York, 1997.Google Scholar
  25. [Kol]
    A.N. Kolomogorov, “New metric invariants of transitive dynamical systems and automorphisms of Lebesgue spaces,”Dokl. Akad. Nauk. SSSR 119 (1958), 861–864.MathSciNetGoogle Scholar
  26. [Kr]
    W. Krieger, “On dimension functions and topological Markov chains,”Invent. Math. 56 (1980), 239–250.CrossRefMATHMathSciNetGoogle Scholar
  27. [KR1]
    K.H. Kim and F.W. Roush, “Some results on decidability of shift equivalence,”J. Combin. Inform. Syst. 4 (1979), 123–146.MATHMathSciNetGoogle Scholar
  28. [KR2]
    — and F.W. Roush, “Decidability of shift equivalence,” inDynamical Systems, edited by J.W. Alexander Lecture Notes in Mathematics Vol. 1342, Springer-Verlag, Heidelberg, 1988.Google Scholar
  29. [KR3]
    — and F.W. Roush, “On the structure of inert automorphisms of subshifts,”Pure Math. Applic. 2 (1991), 3–22.MATHMathSciNetGoogle Scholar
  30. [KR4]
    — and F.W. Roush, “Williams’s conjecture is false for reducible subshifts,”J. AMS 5 (1992), 213–215.MATHMathSciNetGoogle Scholar
  31. [KR5]
    — and F.W. Roush, “Williams’s conjecture is false for irreducible subshifts,”ERA AMS 3 (1997), 105–109.MATHMathSciNetGoogle Scholar
  32. [KR6]
    — and F.W. Roush, “Williams’s conjecture is false for irreducible subshifts,”Ann. Math. 149 (1999), 545–558.CrossRefMATHMathSciNetGoogle Scholar
  33. [KR7]
    — and F.W. Roush, “Path components of matrices and strong shift equivalence over Q+,”Linear Alg. Applic. 145 (1991), 177–186.CrossRefMATHMathSciNetGoogle Scholar
  34. [KR8]
    — and F.W. Roush, “Strong shift equivalence of Boolean and positive rational matrices,”Linear Alg. Appl. 161 (1992), 153–164.CrossRefMATHMathSciNetGoogle Scholar
  35. [KRW1]
    K.H. Kim, F.W. Roush, and J. Wagoner, “Automorphisms of the dimension group and gyration numbers,”J. AMS 5 (1992), 191–212.MATHMathSciNetGoogle Scholar
  36. [KRW2]
    —, “Characterization of inert actions on periodic points, Part I and Part II,” preprint, UC Berkeley, 1997;Forum Math. (in press).Google Scholar
  37. [KRW3]
    — and F.W. Roush, “Inert Actions on Periodic Points,”ERA AMS 3 (1997), 55–62.MATHMathSciNetGoogle Scholar
  38. [L]
    J.-L. LodayCyclic Homology, Springer-Verlag, New York 1998.CrossRefMATHGoogle Scholar
  39. [LM]
    D. Lindand B. Marcus,An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.CrossRefMATHGoogle Scholar
  40. [M]
    B. Marcus, “Symbolic dynamics and connections to coding theory, automata theory and system theory,”AMS Proc. Symp. Appl. Math. 50 (1995), 95–108.CrossRefGoogle Scholar
  41. [Mil]
    J. Milnor,Algebraic K-Theory, Annals of Mathematics Studies Number 72, Princeton University Press, Princeton, NJ, 1971.Google Scholar
  42. [Mi2]
    —, “Infinite cyclic coverings,”Conference on Manifolds, Vol. 13, edited by J.G. Hocking, Prindle, Weber, and Schmidt, Inc., 1968, pp 115–133.Google Scholar
  43. [MB]
    S. MacLane and G. Birkhoff,Algebra, 6th ed., MacMillan, London, 1971.Google Scholar
  44. [MH]
    M. Morse and G.A. Hedlund, “Symbolic dynamics,”Amer. J. Math. 60 (1938), 815–866.CrossRefMathSciNetGoogle Scholar
  45. [MT]
    B. Marcus and S. Truncel, “Matrices of polynomials, positivity, and finite equivalence of Markov chains,”AMS J. 6 (1993), 131–147.MATHGoogle Scholar
  46. [N]
    M. Nasu,Topological Conjugacy for Sofie Systems and Extensions of Automorphisms of Finite Subsystems of Topological Markov Shifts, Springer Lecture Notes in Mathematics Vol. 1342, Springer- Verlag, Berlin, 1988.Google Scholar
  47. bc][PT]
    W. Parry and S. Tuncel, Classification problems in ergodic theory, LMS Lecture Notes 67, Cambridge University Press, 1982.Google Scholar
  48. [PW]
    W. Parry and R.F. Williams, “Block coding and a zeta function for Markov chains,”Proc. LMS 35 (1977), 483–495.MATHMathSciNetGoogle Scholar
  49. [R]
    J. Rosenberg,Algebraic K-Theory and Its Applications, Springer- Verlag, New York, 1994.CrossRefMATHGoogle Scholar
  50. [S1]
    S. Smale, “Differential dynamical systems,” BAMS, 73(6) (1967), 747–847.CrossRefMATHMathSciNetGoogle Scholar
  51. [S2]
    S. Smale, “Finding a horseshoe on the beaches of Rio,”Math. Intelligencer, 20, no. 1 (1998).Google Scholar
  52. [Sh]
    C. Shannon, “A mathematical theory of communication,”Bell Syst. Technol. J. 27 (1948), 379–423, 623-656.CrossRefMATHMathSciNetGoogle Scholar
  53. [SW]
    D. Silver and S. Williams, “Knot invariants from symbolic dynamical systems,” Report No. 4/96, University of South Alabama.Google Scholar
  54. [vdK]
    W. van der Kallen, “Le K2 des nombres duaux,”C.R. Acad. Sci. Paris, Série A 273 (1971), 1204–1207.MATHGoogle Scholar
  55. [W1]
    J.B. Wagoner, “Markov partitions and K2,”Publ. Math. IHES, 65 (1987), 91–129.CrossRefMATHMathSciNetGoogle Scholar
  56. [W2]
    —, “Triangle identities and symmetries of a subshift of finite type,”Pacific J. Math. 144 (1990), 331–350.CrossRefMathSciNetGoogle Scholar
  57. [W3]
    —, “Higher dimensional shift equivalence is the same as strong shift equivalence over the integers,”Proc. AMS 109 (1990), 527–536.CrossRefMATHMathSciNetGoogle Scholar
  58. [W4]
    —, “Eventual finite order generation for the kernel of the dimension group representation,”Trans. AMS 12 (1990), 331–350.CrossRefMathSciNetGoogle Scholar
  59. [W5]
    —, “Classification of subshifts of finite type revisited,”Contemp. Math. 135 (1992), 423–436.CrossRefMathSciNetGoogle Scholar
  60. [W6]
    —, “Markov chains, C*-algebras, and K2,”Adv. Math. 71 (2) (1988), 133–185.CrossRefMATHMathSciNetGoogle Scholar
  61. [W7]
    —, “Strong shift equivalence and Kb2 of the dual numbers,” preprint, UC Berkeley, 1998;J. Reine Angew. Math, (in press).Google Scholar
  62. [W8]
    —, “Strong shift equivalence theory and the shift equivalence problem,” Bull. Amer. Math. Soc. 36 (3) (1999), 271–296.CrossRefMATHMathSciNetGoogle Scholar
  63. [Wi1]
    R.F. Williams, “Classification of subshifts of finite type,”Ann. Math. (2) 98 (1973), 120–153; errata, 99 (1974), 380-381.CrossRefMATHGoogle Scholar
  64. [Wi2]
    —, “Shift equivalence of matrices in GL(2,Z),”Contemp. Math. 135(1992) 445–451.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  1. 1.Mathematics Research GroupAlabama State UniversityMontgomeryUSA
  2. 2.Korean Academy of Science and TechnologyKorea
  3. 3.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations