The Mathematical Intelligencer

, Volume 24, Issue 1, pp 50–60 | Cite as

Victor kac and robert moody: their paths to kac-moody lie algebras

  • Stephen BermanEmail author
  • Karen Hunger ParshallEmail author


Weyl Group Dynkin Diagram Vertex Operator Algebra Cartan Matrice Ican Mathematical Society 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bruce N. Allison, Stephen Berman, Yun Gao, and Arturo Pianzola,A Characterization of Affine Kac-Moody Lie Algebras, Communications in Mathematical Physics,185 (1997), 671–688.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    Georgia Benkart,A Kac-Moody Bibliography and Some Related References, Canadian Mathematical Society Conference Proceedings, vol. 5 (1986), 111–135.MathSciNetGoogle Scholar
  3. [3]
    Stephen Berman,Isomorphisms and Automorphisms of Universal Heffalump Lie Algebras, Proceedings of the American Mathematical Society65 (1977), 29–34.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    Armand Borel,Some Recollections of Harish-Chandra, Current Science65 (1993), 919–921.MathSciNetGoogle Scholar
  5. [5]
    Armand Borel,The Work of Chevalley in Lie Groups and Algebraic Groups, Proceedings of the Hyderabad Conference on Algebraic Groups, ed. S. Ramanan, Madras: Manoj Prakashan, 1991, 1–23.Google Scholar
  6. [6]
    Élie Cartan,Les groupes projectifs qui ne laissent invariante aucune multiplicité plane, Bulletin de la Société mathématique de France41 (1913), 53–96.zbMATHMathSciNetGoogle Scholar
  7. [7]
    Élie Cartan,Les groupes réels simples, finis et continus, Annales scientifiques de l’École normale supérieure31 (1914), 263–355.MathSciNetGoogle Scholar
  8. [8]
    Élie Cartan,Première thèse: Sur la structure des groupes de transformations finis et continus, Paris: Nony, 1894.Google Scholar
  9. [9]
    Arthur Cayley,On Jacobi’s Elliptic Functions, in Reply to the Rev. B. Bronwin; and on Quaternions, Philosophical Magazine26 (1845), 208–211.Google Scholar
  10. [10]
    Claude Chevalley,Sur la classification des algèbres de Lie simples et de leurs représentations, Comptes rendus de l’Académie des Sciences de Paris227 (1948), 1136–1138.zbMATHMathSciNetGoogle Scholar
  11. [11]
    Claude Chevalley,Sur les représentations des algèbres de Lie simples, Comptes rendus de l’Académie des Sciences de Paris227 (1948), 1197.zbMATHMathSciNetGoogle Scholar
  12. [12]
    H. S. M. Coxeter and W. O. J. Moser,Generators and Relations for Discrete Groups, 2d ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 14, New York: Springer-Verlag, 1965.Google Scholar
  13. [13]
    H. S. M. Coxeter,Regular Polytopes, 2d ed., New York: Macmillan, 1963.zbMATHGoogle Scholar
  14. [14]
    Louise Dolan,The Beacon of Kac-Moody Symmetry for Physics, Notices of the American Mathematical Society42 (Dec. 1995), 1489–1495.zbMATHMathSciNetGoogle Scholar
  15. [15]
    Hans Freudenthal and H. de Vries,Linear Lie Groups, New York and London: Academic Press, Inc., 1969.zbMATHGoogle Scholar
  16. [16]
    Howard Garland and James Lepowsky,Lie Algebra Homology and the Macdonald-Kac Formulas, Inventiones Mathematicae34 (1976), 37–76.CrossRefzbMATHMathSciNetGoogle Scholar
  17. [17]
    I. M. Gelfand and A. A. Kirillov,Sur les corps liés aux algèbres enveloppantes des algèbres de Lie, Institut des Hautes Études Scientifiques, Publications mathématiques,31 (1966), 5–19.CrossRefMathSciNetGoogle Scholar
  18. [18]
    Roe Goodman and Nolan R. Wallach,Representations and Invariants of the Classical Groups, Encyclopedia of Mathematics and Its Applications, vol. 68, Cambridge: University Press, 1998.Google Scholar
  19. [19]
    Victor Guillemin and Shlomo Sternberg,An Algebraic Model of Transitive Differential Geometry, Bulletin of the American Mathematical Society70 (1964), 16–47.CrossRefzbMATHMathSciNetGoogle Scholar
  20. [20]
    Harish-Chandra,On Some Applications of the Universal Enveloping Algebra of a Semisimple Lie Algebra, Transactions of the American Mathematical Society70 (1951), 28–99.CrossRefzbMATHMathSciNetGoogle Scholar
  21. [21]
    Thomas Hawkins,Wilhelm Killing and the Structure of Lie Algebras, Archive for History of Exact Sciences23 (1982), 127–192.CrossRefMathSciNetGoogle Scholar
  22. [22]
    Sigurdur Helgason,Differential Geometry, Lie Groups, and Symmetric Spaces, New York: Academic Press, Inc., 1978.zbMATHGoogle Scholar
  23. [23]
    Rebecca Herb,Harish-Chandra and His Work, Bulletin of the American Mathematical Society [2]25 (1991), 1–17.zbMATHMathSciNetGoogle Scholar
  24. [24]
    James E. Humphreys,Introduction to Lie Algebras and Representation Theory, New York: Springer-Verlag, 1972.CrossRefzbMATHGoogle Scholar
  25. [25]
    Nathan Jacobson,Lie Algebras, New York: John Wiley & Sons, 1962.zbMATHGoogle Scholar
  26. [26]
    Victor G. Kac,Automorphisms of Finite Order of Semisimple Lie Algebras, Functional Analysis and Its Applications3 (1969), 252–254.zbMATHGoogle Scholar
  27. [27]
    Victor G. Kac, Correspondence to the authors 10 March, 2000.Google Scholar
  28. [28]
    Victor G. Kac,Graduated Lie Algebras and Symmetric Spaces, Functional Analysis and Its Applications2 (1968), 182–183.zbMATHGoogle Scholar
  29. [29]
    Victor G. Kac,Infinite-dimensional Lie Algebras and Dedekind’s η- Function, Functional Analysis and Its Applications8 (1974), 68–70.zbMATHGoogle Scholar
  30. [30]
    Victor G. Kac,Infinite Dimensional Lie Algebras, 3d ed., Cambridge: University Press, 1990.CrossRefzbMATHGoogle Scholar
  31. [31]
    Victor G. Kac,Simple Graduated Lie Algebras of Finite Growth, Functional Analysis and Its Applications1 (1967), 328–329.Google Scholar
  32. [32]
    Victor G. Kac,Simple Irreducible Graded Lie Algebras of Finite Growth, Math. USSR-lzvestiya2 (1968), 1271–1311.CrossRefGoogle Scholar
  33. [33]
    Victor G. Kac,Some Properties of Contragredient Lie Algebras (in Russian), Trudy MIFM (1969), 48–60.Google Scholar
  34. [34]
    I. L. Kantor,Simple Graded Infinite-Dimensional Lie Algebras, Soviet Mathematics-Doklady9 (1968), 409–412.zbMATHGoogle Scholar
  35. [35]
    Anthony W. Knapp,Lie Groups: Beyond an Introduction, Boston/ Basel/Berlin: Birkhäuser, 1996.CrossRefzbMATHGoogle Scholar
  36. [36]
    Robert P. Langlands,Harish-Chandra, Biographical Memoirs of Fellows of the Royal Society31 (1985), 197–225.CrossRefGoogle Scholar
  37. [37]
    Ian G. Macdonald,Affine Root Systems and Dedekind’s η-Function, Inventiones Mathematicae15 (1972), 91–143.CrossRefzbMATHMathSciNetGoogle Scholar
  38. [38]
    Robert V. Moody, Correspondence with the authors 15 February, 2000.Google Scholar
  39. [39]
    Robert V. Moody,Euclidean Lie Algebras, Canadian Journal of Mathematics21 (1969), 1432–1454.CrossRefzbMATHMathSciNetGoogle Scholar
  40. [40]
    Robert V. Moody,Lie Algebras Associated to Generalized Cartan Matrices, Bulletin of the American Mathematical Society,73 (1967), 217–221.CrossRefzbMATHMathSciNetGoogle Scholar
  41. [41]
    Robert V. Moody,Macdonald Identities and Euclidean Lie Algebras, Proceedings of the American Mathematical Society48 (1975), 43–52.CrossRefzbMATHMathSciNetGoogle Scholar
  42. [42]
    Robert V. Moody,A New Class of Lie Algebras, Journal of Algebra10 (1968), 211–230.CrossRefMathSciNetGoogle Scholar
  43. [43]
    Robert V. Moody,Simple Quotients of Euclidean Lie Algebras, Canadian Journal of Mathematics22 (1970), 839–846.CrossRefzbMATHMathSciNetGoogle Scholar
  44. [44]
    Robert V. Moody,Wigner Medal Acceptance Speech, 1994, unpublished.Google Scholar
  45. [45]
    Robert V. Moody and Arturo Pianzola,Lie Algebras with Triangular Decompositions, New York: John Wiley and Sons, Inc., 1995.zbMATHGoogle Scholar
  46. [46]
    Jean-Pierre Serre,Algèbres de Lie semi-simples complexes, New York: W. A. Benjamin, Inc., 1966.zbMATHGoogle Scholar
  47. [47]
    I. M. Singer and Shlomo Sternberg,On the Infinite Groups of Lie and Cartan, Journal d’analyse mathématique15 (1965), 1–114.CrossRefzbMATHMathSciNetGoogle Scholar
  48. [48]
    Ernst Steinitz,Algebraische Theorie der Körper, Journal für die reine und angewandte Mathematik116 (1910), 1–132.Google Scholar
  49. [49]
    Baertel L. van der Waerden,Die Kassifikation der einfachen Lieschen Gruppen, Mathematische Zeitschrift37 (1933), 446–462.CrossRefMathSciNetGoogle Scholar
  50. [50]
    V. S. Varadarajan,Harish-Chandra and His Mathematical Work, Current Science65 (1993), 918–919.MathSciNetGoogle Scholar
  51. [51]
    Hermann Weyl,Theorie der Darstellung kontinuierlicher halbeinfacher Gruppen durch lineare Transformationen, Teil 3, Mathematische Zeitschrift24 (1926), 377–395.CrossRefMathSciNetGoogle Scholar
  52. [52]
    Ernst Witt,Spiegelungsgruppen und Aufzählung halbeinfacher Liescher Ringe, Hamburger Abhandlungen14 (1941), 289–322.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2002

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of SaskatchewanSaskatoonCanada
  2. 2.Departments of History and MathematicsUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations