The Mathematical Intelligencer

, Volume 15, Issue 1, pp 63–66 | Cite as

Visualizing toral automorphisms

  • Matthew Grayson
  • Bruce Kitchens
  • George Zettler
Article
  • 87 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Halmos,Lectures on Ergodk Theory, Chelsea Publishing Co., New York, 1956.Google Scholar
  2. 2.
    Y. Katznelson, Ergodic automorphisms of T” are Bernoulli,Israel J. Math. 10 (1971), 186–195.CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    H. Weyl, Uber die Gleichverteiling von Zahlen mod. Eins,Math. Ann. 77 (1916), 313–352.CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    W. Reddy, The existence of expansive homeomorphisms on manifolds,Duke Math. Jour. 32 (1965), 627–632.CrossRefMATHGoogle Scholar
  5. 5.
    D. V. Anosov, Roughness of geodesic flows on compact Riemannian manifolds of negative curvature,Sov. Math. Dokl. 3 (1962), 1068–1070.MATHGoogle Scholar
  6. 6.
    K. Berg, On the conjugacy problem for K-systems, Ph.D. Thesis, University of Minnesota, Minneapolis, 1967.Google Scholar
  7. 7.
    R. Adler and B. Weiss, Similarity of automorphisms of the torus,Mem. AMS 98 (1970).Google Scholar
  8. 8.
    R. Adler and R. Palais, Homeomorphic conjugacy of automorphisms on the torus,Proc. AMS 16 (1965), 1221–1225.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1993

Authors and Affiliations

  • Matthew Grayson
    • 1
  • Bruce Kitchens
    • 1
  • George Zettler
    • 2
  1. 1.Mathematical Sciences DepartmentIBM T. J. Watson Research CenterYorktown HeightsUSA
  2. 2.Mathematics DepartmentColumbia UniversityNew YorkUSA

Personalised recommendations