The Mathematical Intelligencer

, Volume 15, Issue 1, pp 20–26 | Cite as

At the Dawn of the Theory of Codes

  • Alexander Barg


Linear Code Code Word Linear Feedback Shift Register Perfect Code Covering Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. E. Shannon, A mathematical theory of communication I, II,Bell Syst. Tech. J. 27 (1948), 379–423, 623–656; reprinted in C. E. Shannon and W. Weaver,A Mathematical Theory of Communication, Urbana: University of Illinois Press (1949).CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    R. G. Gallager,Information Theory and Reliable Communication, New York: Wiley (1968).zbMATHGoogle Scholar
  3. 3.
    I. Csiszar and J. Korner,Information Theory. Coding Theorems for Discrete Memoryless Systems, New York: Academic Press (1981).zbMATHGoogle Scholar
  4. 4.
    R. C. Singleton, Maximum distance g-nary codes,IEEE Trans. Inform. Theory IT-10(2) (1964), 116–118.CrossRefMathSciNetGoogle Scholar
  5. 5.
    W. F. Friedman and C. J. Mendelsohn, Notes on codewords,Amer. Math. Monthly 39 (1932), 394–409.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    D. Kahn,The Codebreakers: The Story of Secret Writing, New York: Macmillian (1968).Google Scholar
  7. 7.
    G. Simmons, How good is the Acme code?Fourth Joint Swedish-Soviet International Workshop on Information Theory, August-September 1989, Gotland, Sweden, Open Problems, pp. 24–30.Google Scholar
  8. 8.
    J. Verhoeff,Error Correcting Decimal Codes, Mathematical Center Tracts No. 29, Amsterdam: Math. Centrum (1969).Google Scholar
  9. 9.
    H. P. Gumm, A new class of check-digit methods for arbitrary number systems,IEEE Trans. Inform. Theory IT- 31(1) (1985), 102–105.CrossRefGoogle Scholar
  10. 10.
    M. R. de Prony, Essai experimentalle et analytique,J. Ecole Polytech. (Paris) 1 (1795), 24–76.Google Scholar
  11. 11.
    J. K. Wolf, Decoding of Bose-Chaudhuri-Hochqueng- hem codes and Prony’s method for curve fitting,IEEE Trans. Inform. Theory IT-13(4) (1967), 608.CrossRefGoogle Scholar
  12. 12.
    R. Hill, Error-correcting codes I, II,Math. Spectrum 22(3) (1989–1990), 94–102; 23(1) (1990-1991), 14-22.Google Scholar
  13. 13.
    S. Ramanujan, Note on a set of simultaneous equations,J. Indian Math. Soc. 4 (1912), 94–96.zbMATHGoogle Scholar
  14. 14.
    W. W. Peterson, Encoding and error correction procedures for the Bose-Chaudhuri codes,IRE Trans. Inform. Theory IT-6 (1960), 459–470.CrossRefGoogle Scholar
  15. 15.
    D. C. Gorenstein and N. Zierler, A class of error-correcting codes inp m symbols,SIAM. 9 (1961), 207- 214.zbMATHMathSciNetGoogle Scholar
  16. 16.
    E. R. Berlekamp,Algebraic Coding Theory, New York: McGraw-Hill (1968).zbMATHGoogle Scholar
  17. 17.
    R. Blahut,Theory and Practice of Error Control Codes, Reading, MA: Addison-Wesley (1984).Google Scholar
  18. 18.
    R. C. Bose and D. K. Ray-Chaudhuri, On a class of error-correcting binary group codes,Inform. Control 3 (1960), 68–79.CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    A. Hochquenghem, Codes correcteurs d’erreurs,Chiffres 2 (1959), 147–156.MathSciNetGoogle Scholar
  20. 20.
    F. J. MacWilliams and N. J. A. Sloane,The Theory of Error-Correcting Codes, Amsterdam: North-Holland (1977).zbMATHGoogle Scholar
  21. 21.
    G. D. Forney, On decoding BCH codes,IEEE Trans. Inform. Theory IT-11(4) (1965), 549–557.CrossRefMathSciNetGoogle Scholar
  22. 22.
    S. Sakata, Decoding binary 2-D cyclic codes by the 2-D Berlekamp-Massey algorithm,IEEE Trans. Inform. Theory IT-37(4) (1991), 1200–1203.CrossRefMathSciNetGoogle Scholar
  23. 23.
    N. Levinson, The Wiener RMS error criterion in filter design and prediction,J. Math. Phys. 25 (1947), 261–278.MathSciNetGoogle Scholar
  24. 24.
    W. F. Trench, An algorithm for the inversion of finite Toeplitz matrices,SIAM J. 12 (1964), 512–522.MathSciNetGoogle Scholar
  25. 25.
    Y. Sugiyama, An algorithm for solving discrete-time Wiener-Hopf equations based upon Euclid’s algorithm,IEEE Trans. Inform. Theory IT-32(3) (1986), 394–409.CrossRefMathSciNetGoogle Scholar
  26. 26.
    I. Honkala, On the early history of the ternary Golay code, an appendix to [31], unpublished manuscript.Google Scholar
  27. 27.
    V. Pless,Introduction to the Theory of Error-Correcting Codes, 2nd ed., New York: Wiley (1989).zbMATHGoogle Scholar
  28. 28.
    M. Golay, Notes on digital coding,Proc. IEEE 37 (1949), 637.Google Scholar
  29. 29.
    J. H. Conway and N. J. A. Sloane,Sphere Packings, Lattices and Groups, New York: Springer-Verlag (1988).CrossRefzbMATHGoogle Scholar
  30. 30.
    H. J. L. Kamps and J. H. van Lint, The football pool problem for 5 matches,J. Comb. Theory, Ser. A 3 (1967), 315–335.CrossRefzbMATHGoogle Scholar
  31. 31.
    H. Hamalainen and S. Rankinen, Upper bounds for football pool problems and mixed covering codes,J. Comb. Theory, Ser. A 56 (1991), 84–95.CrossRefMathSciNetGoogle Scholar
  32. 32.
    J. H. van Lint, Jr. and G. J. M. van Wee, Generalized bounds on binary/ternary mixed packing and covering codes,J. Comb. Theory, Ser. A 57 (1991), 130–143.CrossRefzbMATHGoogle Scholar
  33. 33.
    G. J. M. van Wee, Bounds on packings and coverings by spheres in q-ary and mixed Hamming spaces,J. Comb. Theory, Ser. A 57 (1991), 117–129.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1993

Authors and Affiliations

  • Alexander Barg
    • 1
  1. 1.Institute for Problems of Information TransmissionMoscowRussia

Personalised recommendations