Advertisement

The Mathematical Intelligencer

, Volume 20, Issue 4, pp 55–60 | Cite as

√2 +√3: four different views

  • Susan Landau
Article

Keywords

Galois Group Galois Theory Maximal Chain Splitting Field Irreducible Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Berlekamp, Factoring polynomials over finite fields,Bell Syst. Tech. J. 46 (1967), 1853–1859.CrossRefMathSciNetGoogle Scholar
  2. [2]
    A. Borodin, R. Fagin, J. Hopcroft, and M. Tompa, Decreasing the nesting depth of expressions involving square roots,J. Symbol. Comput. 1 (1985), 169–188.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    D. Kozen and S. Landau, Polynomial decomposition algorithms,J. Symbol. Comput. 7 (1989), 445–456.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    S. Landau, How to tangle with a nested radical,Math. Intell. 16, no. 2 (1994), 49–55.CrossRefzbMATHGoogle Scholar
  5. [5]
    S. Landau, Simplification of nested radicals,SIAM J. Comput. 21 (1992), 85–110.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    S. Landau and G. Miller, Solvability by radicals is in polynomial time,J. Comput. Syst. Sci. 30(2) (1985), 179–208.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    H.W. Lenstra, Jr., Algorithms in algebraic number theory,Bull. AMS 26(2) (1992), 211–244.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    P. Pálfy, A polynomial bound for the orders of primitive solvable groups,J. Algebra 77 (1982), 127–137.CrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    R. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures and public key cryptosystems,Communications of the ACM 21(1978), 120–126.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    B.L. van der Waerden,Algebra, Frederick Ungar Publishing Co. (1977).Google Scholar
  11. [11]
    H. Zassenhaus, On Hensel factorization I,J. Number Theory 1 (1969), 291–311.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1998

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of MassachusettsAmherstUSA

Personalised recommendations