The Mathematical Intelligencer

, Volume 11, Issue 3, pp 29–38 | Cite as

The greatest mathematical paper of all time

  • A. J. Coleman


Why do I think that Z.v.G.II was an epoch-making paper?
  1. (1)

    It was the paradigm for subsequent efforts to classify the possible structures for any mathematical object. Hawkins [15] documents the fact that Killing’s paper was the immediate inspiration for the work of Cartan, Molien, and Maschke on the structure of linearassociative algebras which culminated in Wedderburn’s theorems. Killing’s success was certainly an example which gave Richard Brauer the will to persist in the attempt to classify simple groups.

  2. (2)

    Weyl’s theory of the representation of semi-simple Lie groups would have been impossible without ideas, results, and methods originated by Killing in Z.v.G.II. Weyl’s fusion of global and local analysis laid the basis for the work of Harish-Chandra and the flowering of abstract harmonic analysis.

  3. (3)

    The whole industry of root systems evinced in the writings of I. Macdonald, V. Kac, R. Moody, and others started with Killing. For the latest see [21].

  4. (4)

    The Weyl group and the Coxeter transformation are in Z.v.G.II. There they are realized not as orthogonal motions of Euclidean space but as permutations of the roots. In my view, this is the proper way to think of them for general Kac-Moody algebras. Further, the conditions for symmetrisability which play a key role in Kac’s book [17] are given on p. 21 of Z.v.G.II.

  5. (5)

    It was Killing who discovered the exceptional Lie algebra E8, which apparently is the main hope for saving Super-String Theory—not that I expect it to be saved!

  6. (6)

    Roughly one third of the extraordinary work of Elie Cartan was based more or less directly on Z.v.G.II.


Euclid’sElements and Newton’sPrincipia are more important than Z.v.G.II. But if you can name one paper in the past 200 years of equal significance to the paper which was sent off diffidently to Felix Klein on 2 February 1888 from an isolated outpost of Bismarck’s empire, please inform the Editor of theMathematical Intelligencer.


Simple Group Weyl Group Coxeter Transformation Linear Associative Algebra Wilhelm Killing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Borel in “Hermann Weyl: 1885-1985,” ed. by K. Chandrasekharan, Springer-Verlag (1986).Google Scholar
  2. 2.
    I. Z. Bouwer, Standard Representations of Lie Algebras,Can. Jl. Math 20 (1968), 344–361.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    W. Burnside, “Theory of Groups of Finite Order” 2nd Edition. Dover, 1955. Note M p. 503; in note N he draws attention to the “sporadic”groups (1911).Google Scholar
  4. 4.
    E. Cartan, Oeuvres Complètes, I., Springer-Verlag (1984).Google Scholar
  5. 5.
    C. Chevalley, “Sur la Classification des algèbres de Lie simples et de leurs representations,”Comptes Rendus, Paris 227 (1948), 1136–1138.MathSciNetzbMATHGoogle Scholar
  6. 6.
    H. S. M. Coxeter, “Regular Polytopes,” 3rd Edition, Dover (1973).Google Scholar
  7. 7.
    H. S. M. Coxeter, “Discrete groups generated by reflections”,Annals of Math. (2) 35 (1934), 588–621.MathSciNetCrossRefGoogle Scholar
  8. 8.
    L. P. Eisenhart, “Continuous Groups of Transformations”, Princeton U.P. (1933).Google Scholar
  9. 9.
    F. Engel, “Killing, Wilhelm,”Deutsches Biographisches Jahrbuch, Bd. V for 1923, (1930) 217–224.Google Scholar
  10. 10.
    F. Engel, “Wilhelm Killing,”Jahresber. Deut. Math. Ver. 39 (1930), 140–154.zbMATHGoogle Scholar
  11. 11.
    W. Feit and J. Thompson, “Solvability of groups of odd order,”Pacif. J. Math. 13 (1963), 775–1029.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    K. Gödel, “Ueber formal unentscheidbare Sätze der Principia Mathematica und verwandter System I,”Monatshefte für Math. u. Physik 38 (1931), 173–198.CrossRefGoogle Scholar
  13. 13.
    T. Hawkins, “Hypercomplex Numbers, Lie Groups and the Creation of Group Representation Theory,”Archive for Hist. Exact Sc. 8 (1971), 243–287.MathSciNetCrossRefGoogle Scholar
  14. 14.
    T. Hawkins, “Non-euclidean Geometry and Weierstrassian Mathematics: The background to Killing’s work on Lie Algebras,”Historia Mathematica 7 (1980), 289–342.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    T. Hawkins, “Wilhelm Killing and the Structure of Lie Algebras,”Archive for Hist. Exact Sc. 26 (1982), 126–192.MathSciNetGoogle Scholar
  16. 16.
    V. G. Kac, “Simple irreducible graded Lie algebras of finite growth,”Izvestia Akad. Nauk, USSR (ser. mat.) 32 (1968), 1923–1967; English translation:Math. USSR Izvest. 2 (1968), 1271-1311.Google Scholar
  17. 17.
    V. G. Kac, “Infinite dimensional Lie algebras,” Cambridge University Press, 2nd Edition(1985). Google Scholar
  18. 18.
    W. Killing, “Die Zusammensetzung der stetigen, endlichen Transformationsgruppen,”Mathematische Ann. I, 31 (1888-90), 252;II 33, 1;III 34, 57; 36, 161.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    F. W. LeMire, “Weight spaces and irreducible representations of simple Lie algebras,”Proc. A.M.S. 22 (1969), 192–197.MathSciNetzbMATHGoogle Scholar
  20. 20.
    S. Lie and F. Engel, “Theorie der Transformationsgruppen,” Teubner, Leipzig (1888-1893).Google Scholar
  21. 21.
    R. V. Moody and A. Pianzola, “On infinite Root Systems,” to appear (1988).Google Scholar
  22. 22.
    R. V. Moody, “A new class of Lie algebras,”J. Algebra 10 (1968), 211–230.MathSciNetCrossRefGoogle Scholar
  23. 23.
    P. Oellers, O.F.M., “Wilhelm Killing: Ein Modernes Gelehrtenleben mit Christus,”Religiöse Quellenschriften, Heft 53, (1929) Düsseldorf.Google Scholar
  24. 24.
    E. Wasmann, S. J., “Ein Universitätsprofessor im Tertiarenkleide,”Stimmen der Zeit, Freiburg im Br.; Bd. (1924) 106-107.Google Scholar
  25. 25.
    H. Weyl “Mathematische Analyse des Raumproblems,” Berlin: Springer (1923).CrossRefGoogle Scholar
  26. 26.
    H. Weyl, “Darstellung kontinuierlichen halbeinfachen Gruppen durch lineare Transformationen,”Math. Zeit 23 (1925-26), 271–309; 24, 328-376; 24, 377-395; 24, 789-791.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    H. Weyl, “The structure and representation of continuous groups,” Mimeographed notes by Richard Brauer; Appendix by Coxeter (1934-35).Google Scholar
  28. 28.
    E. Witt, “Treue Darstellung Liescher Ringe,”Jl. Reine und Angew. M. 177 (1937), 152–160.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 1989

Authors and Affiliations

  • A. J. Coleman
    • 1
  1. 1.Department of Mathematics and StatisticsQueen’s UniversityKingstonCanada

Personalised recommendations