The Mathematical Intelligencer

, Volume 21, Issue 1, pp 31–37 | Cite as

The Simple and straightforward construction of the regular 257-gon

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Aaboe,Episodes from the Early History of Mathematics, Washington, D.C.: Mathematical Association of America (1964).MATHGoogle Scholar
  2. 2.
    CF. Gauss,Disquisitiones Arithmeticae, English translation by Arthur A. Clarke, New Haven, CT: Yale University Press, (1966).MATHGoogle Scholar
  3. 3.
    Gauss Tagebuch 1796–1814,Math. Ann. 57 (1903), 1–34.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Kronecker,Werke, Vol. 1, Leipzig: Teubner Verlag (1895).Google Scholar
  5. 5.
    G. Martin,Geometric Constructions, New York: Springer-Verlag (1998).CrossRefMATHGoogle Scholar
  6. 6.
    J. Pierpont, On an undemonstrated theorem of the Disquisitiones Arithmeticae,Bull. Am. Math. Soc. 2 (1895-96), 77–83.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    F.J. Richelot, De resolutione algebraica aequationis x257 = 1, sive de divisione circuli per bisectionam anguli septies repetitam in partes 257 inter se aequales commentatio coronata,Crelle’s Journal IX (1832), 1–26, 146–161, 209–230, 337–356.MathSciNetCrossRefGoogle Scholar
  8. 8.
    I. Stewart,Galois Theory, 2nd ed., London: Chapman & Hall (1989).CrossRefMATHGoogle Scholar
  9. 9.
    P.L. Wantzel, Recherches sur les moyens de reconnaître si un Problème de Géométrie peut se résoudre avec la règle et le com- pas,J. Math. 2 (1837), 366–372.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of StockholmStockholmSweden

Personalised recommendations