Advertisement

The Mathematical Intelligencer

, Volume 18, Issue 1, pp 57–69 | Cite as

Years ago

Beppo levi and the arithmetic of elliptic curves
  • Jeremy J. Gray
Department

Keywords

Elliptic Curve Rational Point Elliptic Curf Finite Order Algebraic Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Billing, G. and Mahler, K. (1940): On exceptional points on cubic curves,J. London Math. Soc. 15, 32–43CrossRefMathSciNetGoogle Scholar
  2. Bourbaki, N. (1974):Éléments ďhistoire des mathématiques, Collection histoire de la pensée, Paris: Hermann.Google Scholar
  3. Coen, S. (1991): Geometry and complex variables in the work of Beppo Levi; inGeometry and Complex Variables, Proc. Int. Meeting on the Occasion of the IX Centennial of the University of Bologna (S. Coen, ed.), New York: Marcel Dekker 111–139.Google Scholar
  4. Coen, S. (1994): Beppo Levi: la vita; inSeminari di Geometria 1991-1993, Università degli Studi di Bologna, Dipart. Math., 193-232.Google Scholar
  5. Deny, J. and Lions, J.L. (1953): Les espaces du type de Beppo Levi,Ann. Inst. Fourier 5, 305–370.CrossRefMathSciNetGoogle Scholar
  6. Dieudonné, J. (1974):Cours de géométrie algébrique, 1: Aperçu historique sur le développement de la géométrie algébrique, Paris: PUF.Google Scholar
  7. Dieudonné, J. et al. (1978):Abrégé ďhistoire des mathématiques 1700-1900, tone II, Paris: Hermann.Google Scholar
  8. Fraenkel, A. and Bar-Hillel, Y. (1958):Foundations of Set Theory, Amsterdam: North-Holland.Google Scholar
  9. Fubini, G. (1907): Sugli integrali multipli,Rend. Acc. Lincei 16, 608–614.zbMATHGoogle Scholar
  10. Gario, P. (1988): Histoire de la résolution des singularités des surfaces algébriques (une discussion entre C. Segre et P. del Pezzo),Cahiers Sémin. Hist. Math. Paris 9, 123–137.MathSciNetGoogle Scholar
  11. Gario, P. (1992): Singolarità e geometria sopra una Superficie nella Corrispondenza di C. Segre a G. Castelnuovo, Arch. Hist. Ex. Sci. 43, 145–188.CrossRefMathSciNetGoogle Scholar
  12. Goldstein, C. (1993): Preuves par descente infinie en analyse diophantienne: programmes, contextes, variations,Cahiers Sémin. Hist. Math. Inst. Henri Poincaré 2(3), 25–49.Google Scholar
  13. Hajòs, G. (1942): Über einfache und mehrfache Bedeckung des n-dimensionalen Raumes mit einem Würfelgitter,Math. Zeitschr. 47 427–467.CrossRefGoogle Scholar
  14. Hawkins, T. (1975):Lebesgue’s Theory of Integration, Its Origins and Developments, 2nd Ed., New York: Chelsea.Google Scholar
  15. Hironaka, H. (1962): On resolution of singularities (characteristic zero), inProceedings of the International Congress of Mathematicians 1962, Djursholm, Sweden: Institut Mittag- Leffler, pp. 507–521.Google Scholar
  16. Hurwitz, A. (1917), Über temäre diophantische Gleichungen dritten Grades,Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich, 62, 207–229(Math. Werke II, 446-468).Google Scholar
  17. Kazan (1906):Izvestiya fiziko-matematicheskogo obshtshestvo pri imperatorskom kazanskom universitet (Bulletin de la Société physico-mathématique de Kasan) (2) 15, 105–118.Google Scholar
  18. Keller, O.-H. (1930). Über die lückenlose Erfüllung des Raumes mit Würfeln.J. Reine Angew. Math. 163, 231–248.zbMATHGoogle Scholar
  19. Kiepert, L. (1888-1890): Über die Transformation der elliptischen Funktionen bei zusammengesetztem Transformations- grade,Math. Ann. 32 (1888), 1–135; Über gewisse Vereinfachungen der Transformationsgleichungen in der Théorie der elliptischen Funktionen,Math. Ann. 37 (1890), 368-398.CrossRefzbMATHMathSciNetGoogle Scholar
  20. Kubert, D. (1976): Universal bounds on the torsion of elliptic curves,Proc. London Math. Soc. 33, 193–237.CrossRefzbMATHMathSciNetGoogle Scholar
  21. Lebesgue, H. (1906): Sur les fonctions dérivées,Rend. Acc. Lincei (5) 152, 3–8.Google Scholar
  22. Lebesgue, H. (1991): Correspondance avec Emile Borei,Cahiers Sémin. Hist. Math. Paris 12.Google Scholar
  23. Levi, B. (1897a): Sulla riduzione dei punti singolari delle superficie algebriche dello spazio ordinario per trasformazioni quadratiche,Ann. Mat. Pura Appl. 26, 218–253.Google Scholar
  24. Levi, B. (1897b): Risoluzione delle singolarità puntuali delle superficie algebriche,Atti Reale Acc. Sci. Torino 33, 66–86.zbMATHGoogle Scholar
  25. Levi, B. (1902): Intorno alla teoria degli aggregati,Rend. Reale Istit. Lombardo Sci. Lett. 35, 863–868.zbMATHGoogle Scholar
  26. Levi, B. (1906a): Sopra ľintegrazione delle serie,Rend. Reale Istit. Lombardo Sci. Lett. 39, 775–780.zbMATHGoogle Scholar
  27. Levi, B. (1906b): Sul Principio di Dirichlet,Rend. Circ. Mat. Palermo 22, 293–360.CrossRefzbMATHGoogle Scholar
  28. Levi, B. (1906-1908): Saggio per una teoria aritmetica delle forme cubiche ternarie,Atti Reale Acc. Sci. Torino 42 (1906), 739–764, 43 (1908), 99-120, 413-434, 672-681.Google Scholar
  29. Levi, B. (1909): Sull’equazione indeterminata del 3° ordine, inAtti del IV Congresso Internazionale dei matematici, Acc. dei Linc., Roma 1908 2, 175–177.Google Scholar
  30. Levi, B. (1911): Un teorema del Minkowski sui sistemi di forme lineari a variabili intere,Rend. Circ. Mat. Palermo 31, 318–340.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1996

Authors and Affiliations

  • Jeremy J. Gray
    • 1
  1. 1.Faculty of MathematicsThe Open UniversityMilton KeynesEngland

Personalised recommendations