The Mathematical Intelligencer

, Volume 17, Issue 4, pp 7–15 | Cite as

If hamilton had prevailed: quaternions in physics

  • J. Lambek


Dirac Equation Minkowski Space Lorentz Transformation Clifford Algebra Projective Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. S. L. Altmann,Rotations, Quaternions and Double Groups, Oxford: Clarendon Press (1986).zbMATHGoogle Scholar
  2. A. W. Conway, On the application of quaternions to some recent developments of electrical theory,Proc. Roy. Irish Acad. A29 (1911), 80.Google Scholar
  3. A. W. Conway, The quaternionic form of relativity,Phil. Mag. 24 (1912), 208.Google Scholar
  4. A. W. Conway, Quaternions and quantum mechanics,Ponteacrè Acad. Sci. Acta 12 (1948), 204–277.MathSciNetGoogle Scholar
  5. A. W. Conway, Hamilton, his life work and influence,Proc. Second Canadian Math. Congress, Toronto: University of Toronto Press (1951).Google Scholar
  6. P. A. M. Dirac, Applications of quaternions to Lorentz transformations,Proc. Roy. Irish Acad. A50 (1945), 261–270.MathSciNetGoogle Scholar
  7. F. Gürsey, Contributions to the quaternionic formalism in special relativity,Rev. Paculté Sci. Univ. Istanbul A20 (1955), 149–171.Google Scholar
  8. F. Gürsey, Correspondence between quaternions and fourspinors,Rev. Faculté Sci. Univ. Istanbul A21 (1958), 33–54.Google Scholar
  9. N. Jacobson,Basic Algebra II, San Francisco: Freeman (1980).zbMATHGoogle Scholar
  10. J. Lambek, Biquaternion vectorfields over Minkowski space, Thesis, Part I, McGill University (1950).Google Scholar
  11. J. C. Maxwell, Remarks on the mathematical classification of physical quantities,Proc. London Math. Soc. 3 (1869), 224–232.CrossRefGoogle Scholar
  12. W. Moore,Schrodinger, Life and Thought, Cambridge: Cambridge University Press (1989).Google Scholar
  13. P. J. Nahin, Oliver Heaviside,Sci. Am. 1990,122–129.Google Scholar
  14. S. Silberstein,Theory of Relativity, London: Macmillan (1924).zbMATHGoogle Scholar
  15. A. Sudbury,Quantum Mechanics and the Particles of Nature, Cambridge: Cambridge University Press, (1986).Google Scholar
  16. J. L. Synge, Quaternions, Lorentz transformations, and the Conway-Dirac-Eddington matrices,Commun. Dublin Inst. Adv. Studies A21 (1972), 1–67.Google Scholar
  17. P. Weiss, On some applications of quaternions to restricted relativity and classical racliation theory,Proc. Roy. Irish Academy A46 (1941), 129–168.Google Scholar
  18. H. Weyl,The Theory of Groups and Quantum Mechanics, Dover Publications, New York: (1950).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 1995

Authors and Affiliations

  • J. Lambek
    • 1
  1. 1.Mathematics DepartmentMcGill UniversityMontrealCanada

Personalised recommendations