Advertisement

The Mathematical Intelligencer

, Volume 22, Issue 1, pp 23–33 | Cite as

Total Positivity: Tests and Parametrizations

  • Sergey FominEmail author
  • Andrei ZelevinskyEmail author
Article

Keywords

Weight Matrix Coxeter Group Planar Network General Linear Group Laurent Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.L. Alperin and R.B. Bell,Groups and Representations, Springer- Verlag, New York, 1995.CrossRefzbMATHGoogle Scholar
  2. 2.
    T. Ando, “Totally positive matrices,”Linear Alg. Appl. 90 (1987), 165–219.CrossRefzbMATHGoogle Scholar
  3. 3.
    A. Berenstein, S. Fomin, and A. Zelevinsky, “Parametrizations of canonical bases and totally positive matrices,”Adv. Math. 122 (1996), 49–149.CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    A. Berenstein and A. Zelevinsky, “Total positivity in Schubert varieties,”Comment. Math. Helv. 72 (1997), 128–166.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    F. Brenti, 1987 “The applications of total positivity to combinatorics, and conversely,” —, 56 pp. 451–473.Google Scholar
  6. 6.
    F. Brenti, “Combinatorics and total positivity,”J. Combin. Theory, Ser.A 71 (1995), 175–218.CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    R.A. Brualdi and, “Combinatorial matrix theory,”Encyclopedia of Mathematics and its Applications, Vol. 39, Cambridge University Press, Cambridge, 1991.Google Scholar
  8. 8.
    A. Cohen, N. Linial, and Yu. Rabinovich, “Totally nonnegative matrices and planar arithmetic circuits,” preprint.Google Scholar
  9. 9.
    C. Cryer, “The LU-factorization of totally positive matrices,”Linear Alg. Appl. 7 (1973), 83–92.CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    C. Cryer, “Some properties of totally positive matrices,”Linear Alg. Appl. 15 (1976), 1–25.CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    E. Curtis, D.V. Ingerman, and J. Morrow, “Circular planar graphs and resistor networks,”Linear Alg. Appl. 283 (1998), 115–150.CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    C.L. Dodgson,The Mathematical Pamphlets of Charles Lutwidge Dodgson and Related Pieces, ed. by F.F. Abeles, Lewis Carroll Society of North America, Silver Spring, MD, 1994.Google Scholar
  13. 13.
    A. Edrei, “On the generating function of totally positive sequences, II,“J. Anal. Math. 2 (1952), 104–109.CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    M. Fekete, “Über ein Problem von Laguerre,”Rend.Circ. Mat. Palermo 34 (1912), 89–100, 110–120.CrossRefzbMATHGoogle Scholar
  15. 15.
    S. Fomin and A. Zelevinsky, “Double Bruhat cells and total positivity,”J. Am. Math. Soc. 12 (1999), 335–380.CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    S. Fomin and A. Zelevinsky, “Recognizing Schubert cells,” preprint math. CO/9807079, July 1998.Google Scholar
  17. 17.
    S. Fomin and A. Zelevinsky, “Totally nonnegative and oscillatory elements in semisimple groups,” preprint math. RT/9811100, November 1998.Google Scholar
  18. 18.
    W. Fulton and J. Harris,Representation Theory, Springer-Verlag, New York, 1991.zbMATHGoogle Scholar
  19. 19.
    D. Gale, “Mathematical entertainments: The strange and surprising saga of the Somos sequences,”Math. Intelligencer 13 (1991), no. 1, 40–42.CrossRefMathSciNetGoogle Scholar
  20. 20.
    F.R. Gantmacher and M.G. Krein, “Sur les matrices oscillatoires,” C. ftAcad. Sci. (Paris) 201 (1935), 577–579.Google Scholar
  21. 21.
    F.R. Gantmacher and M.G. Krein, “Sur les matrices complè tement non négatives et oscillatoires,”Compos. Math. 4 (1937), 445–476.Google Scholar
  22. 22.
    F.R. Gantmacherand M.G. Krein,Oszillationsmatrizen, Oszillationskerne und Kleine Schwingungen Mechanischer Systeme, Akademie- Verlag, Berlin, 1960. (Russian edition: Moscow-Leningrad, 1950.)Google Scholar
  23. 23.
    M. Gasca and J.M. Peña, “Total positivity and Neville elimination,”Linear Alg. Appl. 165 (1992), 25–44.CrossRefzbMATHGoogle Scholar
  24. 24.
    M. Gasca and J.M. Peña, “Total positivity,QR factorization, and Neville elimination,”SIAM J. Matrix Anal. Appl. 14 (1993), 1132- 1140.CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    M. Gasca and C.A. Micchelli (eds.),Total Positivity and Its Applications, Mathematics and Its Applications No. 359, Kluwer Academic Publishers, Dordrecht, 1996.Google Scholar
  26. 26.
    I. Gessel and G.X. Viennot, “Binomial determinants, paths and hooklength formulae,“Adv. Math. 58 (1985), 300–321.CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    I. Gessel and G.X. Viennot, “Determinants, paths, and plane partitions,” preprint.Google Scholar
  28. 28.
    S. Karlin,Total Positivity, Stanford University Press, Stanford, CA, 1968.zbMATHGoogle Scholar
  29. 29.
    S. Karlin and G. McGregor, “Coincidence probabilities,”Pacific J. Math. 9 (1959), 1141–1164.CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    B. Lindström, “On the vector representations of induced matroids,”Bull. London Math. Soc. 5 (1973), 85–90.CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    P. Littelmann, “Bases canoniques et applications,”Séminaire Bourbaki Vol. 1997/98. Astérisque No. 252 (1998), Exp. No. 847, 5, 287–306.MathSciNetGoogle Scholar
  32. 32.
    C. Loewner, “On totally positive matrices,”Math. Z. 63 (1955), 338–340.CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    G. Lusztig, “Total positivity in reductive groups,”Lie Theory and Geometry: in Honor of Bertram Kostant, Progress in Mathematics 123, Birkhäuser, Boston 1994, pp. 531–568.CrossRefMathSciNetGoogle Scholar
  34. 34.
    G. Lusztig, “Introduction to total positivity,”Positivity in Lie theory: Open Problems, de Gruyter Expositions in Mathematics 26, de Gruyter, Berlin, 1998, pp. 133–145.Google Scholar
  35. 35.
    J.L. Malouf, “An integer sequence from a rational recursion,”Discrete Math. 110 (1992), 257–261.CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    E.H. Moore, “Concerning the abstract groups of orderk and1/2 k,”Proc. London Math. Soc. 28 (1897), 357–366.zbMATHGoogle Scholar
  37. 37.
    T. Muir,The Theory of Determinants, 2nd ed., Macmillan, London, 1906, Vol. 1.zbMATHGoogle Scholar
  38. 38.
    A. Pinkus, “Spectral properties of totally positive kernels and matrices,”in [25], pp. 477–511.Google Scholar
  39. 39.
    G. Ringel, “Teilungen der Ebene durch Geraden oder topologische Geraden,“Math. Z. 64 (1956), 79–102.CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    I.J. Schoenberg,Selected Papers, Birkhäuser, Boston 1988, Vol. 2.Google Scholar
  41. 41.
    I.J. Schoenberg, “Über Variationsverminderende lineare Transformationen,“Math. Z. 32 (1930), 321–328.CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    R.P. Stanley, “Log-concave and unimodal sequences in algebra, combinatorics and geometry,“Ann. NY Acad. Sci. 576 (1989), 500–534.CrossRefGoogle Scholar
  43. 43.
    J.R. Stembridge, “Immanants of totally positive matrices are non- negative,”Bull. London Math. Soc. 23 (1991), 422–428.CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    E. Thoma, “Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen symmetrischen Gruppe,”Math. Z, 85 (1964), 40–61.CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    J. Tits, “Le problè me des mots dans les groupes de Coxeter,” 1969Symposia Mathematica (INDAM, Rome, 1967/68), Vol. 1., 175- 185, Academic Press, London.MathSciNetGoogle Scholar
  46. 46.
    A.M. Whitney, “A reduction theorem for totally positive matrices,”J. Anal. Math. 2 (1952), 88–92.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2000

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA
  2. 2.Department of MathematicsNortheastern UniversityBostonUSA

Personalised recommendations