The Mathematical Intelligencer

, Volume 19, Issue 4, pp 7–15 | Cite as

The miraculous universal distribution

  • Walter Kirchherr
  • Ming Li
  • Paul Vitányi


Stock Market Turing Machine Mathematical Intelligencer Short Description Binary String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Boswell,The Life of Samuel Johnson, New York: Doubleday and Co. (1945).Google Scholar
  2. 2.
    T. Bayes, An essay towards solving a problem in the doctrine of chances,Philos. Trans. Roy. Soc. 53 (1764) 376–398; 54 (1764) 298-331.Google Scholar
  3. 3.
    D. Hume,Treatise of Human Nature, Book I, 1739.Google Scholar
  4. 4.
    L.G. Kraft, A device for quantizing, grouping, and coding amplitude modulated pulses, Master’s thesis, Department of Electrical Engineering, M.I.T., Cambridge, MA, 1949.Google Scholar
  5. 5.
    P.S. Laplace,A philosophical essay on probabilities, 1819. English translation: New York: Dover (1951).MATHGoogle Scholar
  6. 6.
    M. Li and P.M.B. Vitányi, Worst case complexity is equal to average case complexity under the universal distribution,Inform. Process. Lett. 42 (1992), 145–149.CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    M. Li and P.M.B. Vitányi,An Introduction to Kolmogorov Complexity and Its Applications, 2nd ed., New York: Springer-Verlag (1997).CrossRefMATHGoogle Scholar
  8. 8.
    I. Newton,Philosophiae Naturalis Principia Mathematica also known as thePrincipia, 1687.Google Scholar
  9. 9.
    Titus Lucretius Cams,The Nature of the Universe (Ronald Latham, translator), New York: Penguin Books (1965).Google Scholar
  10. 10.
    B. Russell,A History of Western Philosophy, New York: Simon and Schuster (1945).Google Scholar
  11. 11.
    A.M. Turing, On computable numbers with an application to the Entscheidungsproblem,Proc. London Math. Soc, Ser. 2 42 (1936), 230–265; Correction, 43 (1937), 544–546.MathSciNetGoogle Scholar
  12. 12.
    J. von Neumann,Collected Works, Volume V, New York: Pergamon Press (1963).Google Scholar

Copyright information

© Springer-Verlag New York 1997

Authors and Affiliations

  1. 1.Mathematics DepartmentSan Jose State UniversitySan JoseUSA
  2. 2.Department of Computer ScienceUniversity of WaterlooWaterlooCanada
  3. 3.CWIAmsterdamThe Netherlands

Personalised recommendations