Advertisement

The Mathematical Intelligencer

, Volume 20, Issue 1, pp 14–15 | Cite as

Brouwer-Heyting Sequences Converge

  • Jonathan M. BorweinEmail author
Article

Keywords

Cauchy Sequence Decimal Point Underlying Method Decimal Expansion Organic Mathematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    David H. Bailey, Jonathan M. Borwein, Peter B. Borwein, and Simon Plouffe, “The Quest for Pi,” Mathematical Intelligencer 19, no.1 (Winter 1997), 50–57.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    L. Berggren, J. Borwein, and P. Borwein, PI: A Source Book, Springer-Verlag, New York, 1997.zbMATHGoogle Scholar
  3. [3]
    J.M. Borwein, P.B. Borwein, and D.H. Bailey, “Ramanujan, modular equations and pi or how to compute a billion digits of pi,” American Mathematical Monthly 96 (1989), 201–219. Reprinted in Organic Mathematics Proceedings, http://www.cecm.sfu.ca/ organics, April12, 1996, with print version: CMS/AMS Conference Proceedings, 20 (1997), ISSN: 0731-1036.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    L.E.J. Brouwer, “Intuitionische Zerlegung mathematischer Grundbegriffe,” Jahresbericht deutsch. Math. Ver. 33 (1925), 251–256.zbMATHGoogle Scholar
  5. [5]
    R. Hersh, “Fresh breezes in the philosophy of mathematics,” American Mathematical Monthly 102 (1995), 589–594.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    A. Heyting, Intuitionism: an Introduction, North-Holland Publishing Co., Amsterdam, 1956.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1998

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsSimon Fraser UniversityBurnabyCanada

Personalised recommendations