The Mathematical Intelligencer

, Volume 2, Issue 1, pp 6–15 | Cite as

Euclidean number fields 1

  • Hendrik W. Lenstra
  • A. J. van der Poorten
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Cajori, Pierre Laurent Wantzel,Bull. Amer. Math. Soc. 24(1918), 339–347MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. Cauchy,Oeuvres complètes, sér. 1, tome X, GauthierVillars, Paris 1897.Google Scholar
  3. 3.
    Comptes Rendus de ľAcadémie des Sciences 24 (1847)Google Scholar
  4. 4.
    L. E. Dickson,History of the theory of numbers, vol. II, Ch. XXVI, Chelsea, New York 1952 (reprint)Google Scholar
  5. 5.
    L. E. Dickson et al.,Algebraic numbers, Chelsea, Bronx, n. d. (reprint)Google Scholar
  6. 6.
    G. Lejeune Dirichlet,Werke, Chelsea, Bronx 1969 (reprint)Google Scholar
  7. 7.
    H. M. Edwards, The background of Kummer’s proof of Fermat’s last theorem for regular primes,Arch. History Exact Sci. 14 (1975), 219–236; Postscript, ibid. 17 (1977), 381–394MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    G. Eisenstein,Mathematische Werke, Chelsea, New York 1975MATHGoogle Scholar
  9. 9.
    C. F. Gauss,Werke, Zweiter Band, Göttingen 1876Google Scholar
  10. 10.
    C. G. J. Jacobi,Gesammelte Werke, Sechster Band, Chelsea, New York 1969 (reprint)MATHGoogle Scholar
  11. 11.
    E. E. Kummer,Collected Papers, Springer, Berlin 1975Google Scholar
  12. 12.
    R. B. Lakein, Eucliďs algorithm in complex quartic fields,Acta Arith. 20 (1972), 393–400MATHMathSciNetGoogle Scholar
  13. 13.
    H. W. Lenstra{jrjr.}, Eucliďs algorithm in cyclotomic fields,J. London Math. Soc. (2) 10 (1975), 457–465CrossRefMathSciNetGoogle Scholar
  14. 14.
    H. W. Lenstra, {jrJr.}, Quelques exemples ďanneaux euclidiens,C. R. Acad. Se. Paris, Sér. A, 286 (1978), 683–685MATHMathSciNetGoogle Scholar
  15. 15.
    J. M. Masley, On Euclidean rings of integers in cyclotomic fields.J. Reine Angew. Math. 272 (1975), 45–48MATHMathSciNetGoogle Scholar
  16. 16.
    J. M. Masley, H. L. Montgomery, Cyclotomic fields with unique factorization,J. Reine Angew. Math. 286/287 (1976), 248–256MathSciNetGoogle Scholar
  17. 17.
    T. Ojala, Eucliďs algorithm in the cyclotomic field Q(ζ 16),Math. Comp. 31 (1977), 268–273MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    J. Ouspensky, Note sur les nombres entiers dépendant ďune racine cinquième de ľunité,Math. Ann. 66 (1909), 109–112. Cf.Jbuch Fortschr. Math. 37 (1906) 241MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    H. J. S. Smith,Report on the theory of numbers, Chelsea, Bronx 1965 (reprint)Google Scholar
  20. 20.
    S. S. Wagstaff, {jrJr.}, The irregular primes to 125,000,Math. Comp. 32(1978), 583–591MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    A. Weil, La cyclotomie jadis et naguère,Sém. Bourbaki (1973/74), exp. 452,Lecture Notes Math. 431. Springer, Berlin 1975Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Hendrik W. Lenstra
    • 1
  • A. J. van der Poorten
    • 2
  1. 1.Mathematisch Instituut Universiteit van Amsterdam Roetersstraat 15AmsterdamNetherlands
  2. 2.School of Mathematics and Physics Macquarie University North RydeAustralia

Personalised recommendations