The Mathematical Intelligencer

, Volume 17, Issue 3, pp 67–70 | Cite as

An eigenvector proof of fatou’s lemma for continuous functions

  • Stephen Simons
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Cunningham, Taking limits under the integral sign,Math. Mag. 40 (1967), 179–186.CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    W. F. Eberlein, Notes on integration I: The underlying convergence theorem,Commun. Pure Appi. Math. 10 (1957), 357–360.CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    M. Fabian and G. Godefroy, The dual of every Asplund space admits a projectional resolution of the identity,Studia Mathematica 91 (1988), 141–151.MATHMathSciNetGoogle Scholar
  4. 4.
    B. Fuchssteiner and M. Neumann, Small boundaries,Arch. Math. 30 (1978), 613–621.CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    G. Godefroy, Boundaries of a convex set and interpolation sets,Math. Ann. 277 (1987), 173–184.CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    G. Godefroy, Five lectures in geometry of Banach spaces,Seminar on Functional Analysis, Vol. 1 (1987), Univ. de Murcia.Google Scholar
  7. 7.
    G. Godefroy and V. Zizler, Roughness properties of norms on non Asplund spaces,Mich. Math. J. 38 (1991), 461–466.CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    R. C. James, Reflexivity and the sup of linear functionals,Israel J. Math. 13 (1972), 289–300.CrossRefMathSciNetGoogle Scholar
  9. 9.
    H. Kestelman, Riemann integration of limit functions,Amer. Math. Monthly, 77 (1970), 182–187.CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    H. König, Two theorems in superconvex analysis,General Inequalities 4, Basel: Birkhäuser (1984), 203–211.Google Scholar
  11. 11.
    H. König, Theory and applications of superconvex spaces,Aspects of Positivity in Functional Analysis, R. Nagel, U. Schlotterbeck and M. P. H. Wolff, eds., Elsevier Science Publishers (North-Holland) (1986), 79–117.Google Scholar
  12. 12.
    H. König, On the Main Theorems of Superconvex Analysis, Ökonomieuna Mathematik, Heidelberg: Springer-Verlag (1987), 29–34.Google Scholar
  13. 13.
    J. W. Lewin, A truly elementary approach to the bounded convergence theorem,Amer. Math. Monthly 93 (1986), 395–397.CrossRefMathSciNetGoogle Scholar
  14. 14.
    W. A. J. Luxemburg, Arzelà’s dominated convergence theorem for the Riemann integral,Amer. Math. Monthly 78 (1971), 970–979.CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    J. Rainwater, Weak convergence of bounded sequences,Proc. Amer. Math. Soc. 14 (1963), 999.MATHMathSciNetGoogle Scholar
  16. 16.
    F. Riesz, Über Integration unendlicher Folgen,Jahresb. Deutscher Math.-Verein. 26 (1917), 274–278.MATHGoogle Scholar
  17. 17.
    G. Rodé, Superkonvexe Analysis,Arch. Math. 34 (1980), 452–462.CrossRefMATHGoogle Scholar
  18. 18.
    S. Simons, A theorem on lattice-ordered groups, results of Ptàk, Namioka and Banach, and a front-ended proof of Lebesgue’s Theorem,Pacific J. Math. 20 (1967), 149–153.CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    S. Simons, A convergence theory with boundary,Pacific J. Math. 40 (1972), 703–708.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Stephen Simons
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations