The Mathematical Intelligencer

, Volume 16, Issue 3, pp 47–58 | Cite as

The status of the kepler conjecture

  • Thomas C. Hales
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Cipra, Gaps in a sphere-packing proof?,Science 259 (1993), 895.Google Scholar
  2. 2.
    L. Fejes Tóth,Regular Figures, New York: MacMillan, 1964.MATHGoogle Scholar
  3. 3.
    L. Fejes Tóth,Lagerungen in der Ebene auf der Kugel und im Raum, Berlin: Springer-Verlag, 1953.CrossRefMATHGoogle Scholar
  4. 4.
    David H. Freedman, Round things in square spaces,Discover, 13(1) (January 1992), 36.Google Scholar
  5. 5.
    S. Günther, Ein stereometrisches Problem,Arch. Math. Phys. 57 (1875), 209–215.MATHGoogle Scholar
  6. 6.
    W.-Y. Hsiang, On the density of sphere packings inE 3, II — The proof of Kepler’s conjecture, Center for Pure and Appl. Math. University of California, Berkeley, preprint PAM-535, September, 1991.Google Scholar
  7. 7.
    W.-Y. Hsiang, On the sphere packing problem and the proof of Kepler’s conjecture,Int. J. Math. 4(5) (1993), 739–831.CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    W.-Y. Hsiang, personal communication, Letter to T. Hales, March 3, 1992.Google Scholar
  9. 9.
    I. Stewart, The kissing number,Scientific American 256(2) (Feb. 1992), 112–115.CrossRefGoogle Scholar
  10. 10.
    I. Stewart, Mathematics, 1992Yearbook to the Encyclopædia Britannica, 1992.Google Scholar
  11. 11.
    I. Stewart, Has the sphere packing problem been solved?,New Scientist 134 (2 May 1992), 16.Google Scholar
  12. 12.
    I. Stewart,The Problems of Mathematics, 2nd ed., New York: Oxford University Press, 1992.MATHGoogle Scholar

Bibliography

  1. 1.
    C. Bender, Bestimmung der grössten Anzahl gleich grosser Kugeln, welche sich auf eine Kugel von demselben Radius, wie die übrigen, auflegen lassen,Arch. Math. Phys. 56 (1874), 302–306.MATHGoogle Scholar
  2. 2.
    A. H. Boerdijk, Some remarks concerning close-packing of equal spheres,Philips Res. Rep. 7 (1952), 303–313.MATHMathSciNetGoogle Scholar
  3. 3.
    B. Cipra, Music of the spheres,Science 251 (1991), 1028.CrossRefGoogle Scholar
  4. 4.
    J. H. Conway and N. J. A. Sloane,Sphere Packings, Lattices and Groups, 2nd ed., New York: Springer-Verlag, 1993.CrossRefMATHGoogle Scholar
  5. 5.
    L. Fejes Tóth, Über die dichteste Kugellagerung,Math. Z. 48 (1942–13), 676–684.CrossRefGoogle Scholar
  6. 6.
    R. Hoppe, Bemerkung der Redaction,Arch. Math. Phys. 56 (1874), 307–312.Google Scholar
  7. 7.
    W.-Y. Hsiang, On the density of sphere packings inE 3, I, preprint, 1990.Google Scholar
  8. 8.
    W.-Y. Hsiang, On the density of sphere packings inE 3 — Kepler’s conjecture and Hilbert’s 18th problem, preprint, 1990.Google Scholar
  9. 9.
    W.-Y. Hsiang, Sphere packings and spherical geometry — Kepler’s conjecture and beyond, Center for Pure and Appl. Math. University of California, Berkeley, preprint PAM-528, July 1991.Google Scholar
  10. 10.
    W.-Y. Hsiang, On the density of sphere packings inE 3, I, Center for Pure and Appl. Math. University of California, Berkeley, preprint PAM-530, August 1991.Google Scholar
  11. 11.
    J. Leech, The problem of the thirteen spheres,The Mathematical Gazette 40(331) (Feb. 1956), 22–23.CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    D. J. Muder, A new bound on the local density of sphere packings,Discrete Comp. Geom. 10 (1993), 351–375.CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    K. Schütte and B. L. van der Waerden, Das Problem der dreizehn Kugeln,Math. Annalen 125 (1953), 325–334.CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1994

Authors and Affiliations

  • Thomas C. Hales
    • 1
  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations