The Mathematical Intelligencer

, Volume 19, Issue 1, pp 50–56 | Cite as

The quest for PI

  • bailey David H. Email author
  • plouffe Simon M. Email author
  • borwein Peter B. Email author
  • borwein Jonathan M. Email author


Mathematical Intelligencer Decimal Digit Correct Digit Decimal Expansion 527th Decimal Place 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. H. Bailey, The computation of pi to 29,360,000 decimal digits using Borweins’ quartically convergent algorithm,Mathematics of Computation 42 (1988), 283–296.CrossRefMathSciNetGoogle Scholar
  2. 2.
    D. H. Bailey, P. B. Borwein, and S. Plouffe, On the rapid computation of various polylogarithmic constants, (to appear in Mathematics of Computation). Available fromhttp://www.cecm.sfu/personal/pborwein/.Google Scholar
  3. 3.
    P. Beckmann,A History of Pi, New York: St. Martin’s Press (1971).zbMATHGoogle Scholar
  4. 4.
    L. Berggren, J. M. Borwein, and P. B. Borwein,A Sourcebook on Pi, New York: Springer-Verlag (to appear).Google Scholar
  5. 5.
    J. M. Borwein and P. B. Borwein,Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity, New York: Wiley (1987).zbMATHGoogle Scholar
  6. 6.
    J. M. Borwein and P. B. Borwein, Ramanujan and pi,Scientific American (February 1987), 112-117.Google Scholar
  7. 7.
    J. M. Borwein, P. B. Borwein, and D. H. Bailey, Ramanujan, modular equations, and approximations to pi, or how to compute one billion digits of pi,American Mathematical Monthly 96 (1989), 201–219. Also available from the URL Scholar
  8. 8.
    R. P. Brent, Fast multiple-precision evaluation of elementary functions,Journal of the ACM 23 (1976), 242–251.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    D. Chudnovsky and C. Chudnovsky, personal communication (1995).Google Scholar
  10. 10.
    H. R. P. Ferguson and D. H. Bailey, Analysis of PSLQ, an integer relation algorithm, unpublished, 1996.Google Scholar
  11. 11.
    T. L. Heath (trans.), The works of Archimedes, inGreat Books of the Western World (Robert M. Hutchins, ed.), Encyclopedia Britannica (1952), Vol. 1, pp. 447–451.Google Scholar
  12. 12.
    Y. Kanada, personal communication (1996). See also Kanada’s book (in Japanese),Story of Pi, Tokyo: Tokyo-Toshyo Co. Ltd. (1991).Google Scholar
  13. 13.
    D. E. Knuth,The Art of Computer Programming, Reading, MA: Addison-Wesley, (1981), Vol. 2.zbMATHGoogle Scholar
  14. 14.
    R. Preston, The mountains of pi,The New Yorker, 2 March 1992, 36-67.Google Scholar
  15. 15.
    S. D. Rabinowitz and S. Wagon, A spigot algorithm for pi,American Mathematical Monthly 103 (1995), 195–203.CrossRefMathSciNetGoogle Scholar
  16. 16.
    E. Salamin, Computation of pi using arithmetic-geometric mean,Mathematics of Computation 30 (1976), 565–570.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    D. Shanks and J. W. Wrench, Calculation of pi to 100,000 decimals,Mathematics of Computation 16 (1962), 76–79.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    S. Wagon, Isit normal?Mathematical Intelligencer 7 (1985), no. 3, 65–67.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1997

Authors and Affiliations

  1. 1.NASA Ames Research CenterMoflett FieldUSA
  2. 2.Centre for Experimental and Constructive MathematicsSimon Fraser UniversityBumabyCanada
  3. 3.Centre for Expenmental and Constructive Ma’nemafccsSimon Fraser UniversityBurnabyCanada
  4. 4.Centre for Experimental and Constuctve MatnematicsSimon Araser UniversitytyBumabyCanada

Personalised recommendations