The Mathematical Intelligencer

, Volume 18, Issue 3, pp 66–70

The solution of then-body problem

  • Florin Diacu
Article
  • 317 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    K.G. Andersson, Poincaré’s discovery of homoclinic points,Archive for History of Exact Sciences 48 (1994), 133–147.CrossRefMATHMathSciNetGoogle Scholar
  2. [BG]
    J. Barrow-Green, Oscar II’s prize competition and the error in Poincaré’s memoir on the three body problem,Archive for History of Exact Sciences 48 (1994), 107–131.CrossRefMathSciNetGoogle Scholar
  3. [B]
    J. Bernoulli,Opera Omnia, vol. I, Georg Olms Verlagsbuchandlung, Hildesheim, 1968.MATHGoogle Scholar
  4. [Bi]
    G. Bisconcini, Sur le problème des trois corps,Acta Mathematica 30 (1906), 49–92.CrossRefMathSciNetGoogle Scholar
  5. [Br]
    E.H. Bruns, Über die Integrale des Vielkörper-Problems,Acta Mathematica 11 (1887), 25–96.CrossRefMathSciNetGoogle Scholar
  6. [CJZ]
    C. Calude, H. Jürgensen and M. Zimand, Is independence an exception?Applied Math. Comput. 66 (1994), 63–76.CrossRefMATHGoogle Scholar
  7. [D1]
    F.N. Diacu,Singularities of the N-Body Problem, Les Publications CRM, Montréal, 1992.MATHGoogle Scholar
  8. [D2]
    F.N. Diacu, Painlevé’s conjecture,The Mathematical Intelligencer 15 (1993), no. 2, 6–12.CrossRefMATHMathSciNetGoogle Scholar
  9. [DH]
    F.N. Diacu and P. Holmes,Celestial Encounters—The Origins of Chaos and Stability. Princeton University Press (to appear in August 1996).Google Scholar
  10. [Di]
    Dieudonné, J.,A History of Algebraic and Differential Topology 1900-1960, Birkhäuser, Boston, Basel, 1989.Google Scholar
  11. [G]
    R.L. Goodstein,Essays in the Philosophy of Mathematics, Leicester University Press, 1965.Google Scholar
  12. [Go]
    K. Godei, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Système,Monatshefte für Mathematik und Physik 38 (1931), 173–198.Google Scholar
  13. [P]
    H. Poincaré,New Methods of Celestial Mechanics (with an introduction by D.L. Goroff), American Institute of Physics, 1993.Google Scholar
  14. [S]
    D.G. Saari, A visit to the Newtonian N-body problem via elementary complex variables,The American Mathematical Monthly 97 (1990), 105–119.CrossRefMATHMathSciNetGoogle Scholar
  15. [Si]
    C.L. Siegel, Der Dreierstoß,Annals of Mathematics 42 (1941), 127–168.CrossRefMathSciNetGoogle Scholar
  16. [Sul]
    K. Sundman, Recherches sur le problème des trois corps,Acta Societatis Scientiarum Fennicae 34 (1907), no. 6.Google Scholar
  17. [Su2]
    K. Sundman, Nouvelles recherches sur le problème des trois corps,Acta Societatis Scientiarum Fennicae 35 (1909), no. 9.Google Scholar
  18. [Su3]
    K. Sundman, Mémoire sur le problème des trois corps,Acta Mathematica 36 (1912), 105–179.CrossRefMATHMathSciNetGoogle Scholar
  19. [U]
    J.B. Urenko, Improbability of collisions in Newtonian gravitational systems of specified angular momentum.SIAM f. Appl. Math. 36 (1979), 123–147.CrossRefMATHMathSciNetGoogle Scholar
  20. [Wa]
    Q. Wang, The global solution of the n-body problem,Celestial Mechanics 50 (1991), 73–88.CrossRefMATHGoogle Scholar
  21. [W]
    A. Wintner,The Analytical Foundations of Celestial Mechanics, Princeton University Press, Princeton, NJ, 1941.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 1996

Authors and Affiliations

  • Florin Diacu
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of VictoriaVictoriaCanada

Personalised recommendations