The Mathematical Intelligencer

, Volume 18, Issue 3, pp 57–65 | Cite as

Quaternionic determinants

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Artin,Geometric Algebra, New York: Interscience, 1957; reprinted by Wiley, New York, 1988.MATHGoogle Scholar
  2. 2.
    H. Aslaksen,SO(2) invariants of a set of 2 x 2 matrices.Math. Scand. 65 (1989), 59–66.MATHMathSciNetGoogle Scholar
  3. 3.
    H. Aslaksen, E.-C. Tan, and C. Zhu, Invariant theory of special orthogonal groups,Pacific ]. Math. (in press).Google Scholar
  4. 4.
    A. Bagazgoitia, A determinantal identity for quaternions, inProceedings of 1983 Conference on Algebra Lineal y Aplicaciones, Vitoria-Gasteiz, Spain, 1984, pp. 127–132.Google Scholar
  5. 5.
    R. W. Barnard and E. Hastings Moore,General analysis. Part 1, Memoirs of the American Philosophical Society, 1935.Google Scholar
  6. 6.
    J. Brenner, Expanded matrices from matrices with complex elements,SIAM Rev. 3 (1961), 165–166.CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    J. Brenner, Applications of the Dieudonné determinant,Linear Algebra Appl. 1 (1968), 511–536.CrossRefMATHGoogle Scholar
  8. 8.
    J. Brenner, Corrections to “Applications of the Dieudonné determinant,”Linear Algebra Appl. 13 (1976), 289.CrossRefMATHGoogle Scholar
  9. 9.
    J. Brenner and J. De Pillis, Generalized elementary symmetric functions and quaternion matrices,Linear Algebra Appl. 4 (1971), 55–69.CrossRefMATHGoogle Scholar
  10. 10.
    A. Cayley, On certain results relating to quaternions,Philos. Mag. 26 (1845), 141–145; reprinted inThe Collected Mathematical Papers Vol. 1, Cambridge: Cambridge University Press, 1989, pp. 123–126.Google Scholar
  11. 11.
    L. Chen, Definition of determinant and Cramer solution over the quaternion field,Acta Math. Sinica (N.S.) 7 (1991), 171–180.CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    L. Chen, Inverse matrix and properties of double determinant over quaternion field,Sci. China Ser. A 34 (1991), 528–540.MATHMathSciNetGoogle Scholar
  13. 13.
    P. M. Cohn, The similarity reduction of matrices over a skew field,Math. Z. 132 (1973), 151–163.CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    P. M. Cohn,Algebra, vol. 1, 2nd ed., New York: Wiley, 1991.Google Scholar
  15. 15.
    P. M. Cohn,Algebra, vol. 3, 2nd ed. New York: Wiley, 1991.Google Scholar
  16. 16.
    M. L. Curtis,Matrix Groups, New York: Springer-Verlag, 1979; 1984.CrossRefGoogle Scholar
  17. 17.
    J. Dieudonné, Les déterminants sur un corps non-commutatif,Bull. Soc. Math. France 71 (1943), 27–45.MATHMathSciNetGoogle Scholar
  18. 18.
    J. Dieudonné.Special Functions and Linear Representations of Lie Groups, CBMS 42, Providence, RI, American Mathematical Society, 1980.MATHGoogle Scholar
  19. 19.
    R. Dimitrić and B. Goldsmith, Sir William Rowan Hamilton,Math. Intelligencer 11 (1989), no. 2, 29–30.CrossRefMathSciNetGoogle Scholar
  20. 20.
    F. J. Dyson, Correlations between eigenvalues of a random matrix,Commun. Math. Phys. 19 (1970), 235–250.CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    F. J. Dyson, Quaternion determinants,Helv. Phys. Acta 45 (1972), 289–302.Google Scholar
  22. 22.
    I. M. Gelfand and V. S. Retakh, Determinants of matrices over noncommutative rings,Functional Anal. Appl. 25 (1991), 91–102.CrossRefMathSciNetGoogle Scholar
  23. 23.
    F. Reese Harvey,Spinors and Calibrations, New York, Academic Press, 1990.MATHGoogle Scholar
  24. 24.
    W. R. Hamilton,Elements of Quaternions, 2nd ed., London: Longman, 1889.Google Scholar
  25. 25.
    A. Heyting, Die Théorie der linearen Gleichungen in einer Zahlenspezies mit nichtkommutativer Multiplikation,Math. Ann. 98 (1927), 465–490.CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    M. H. Ingraham, A note on determinants,Bull. Amer. Math. Soc. 43 (1937), 579–580.CrossRefMathSciNetGoogle Scholar
  27. 27.
    N. Jacobson, Normal semi-linear transformations,Amer. J. Math. 61 (1939), 45–58.CrossRefMathSciNetGoogle Scholar
  28. 28.
    N. Jacobson, An application of E. H. Moore’s determinant of a Hermitian matrix,Bull. Amer. Math. Soc. 45 (1939), 745–748.CrossRefMathSciNetGoogle Scholar
  29. 29.
    H. C. Lee, Eigenvalues and canonical forms of matrices with quaternionic entries,Proc. Roy. Irish Acad. Sect. A, 52 (1949), 253–260.MathSciNetGoogle Scholar
  30. 30.
    D. W. Lewis, A determinantal identity for skewfields,Linear Algebra Appl. 7 (1985), 213–217.CrossRefGoogle Scholar
  31. 31.
    K. O. May, The impossibility of a division algebra of vectors in three dimensional space,Amer. Math. Monthly 73 (1966), 289–291.CrossRefMathSciNetGoogle Scholar
  32. 32.
    Madan Lal Mehta, Determinants of quaternion matrices,J. Math. Phys. Sci. 8 (1974), 559–570.MATHGoogle Scholar
  33. 33.
    Madan Lal Mehta,Elements of Matrix Theory, Dehli Hindustan Pub. Corp., 1977.MATHGoogle Scholar
  34. 34.
    E. H. Moore, On the determinant of an hermitian matrix of quaternionic elements,Bull. Amer. Math. Soc. 28 (1922), 161–162.MATHGoogle Scholar
  35. 35.
    Thomas Muir,The Theory of Determinants, Vol. 2, London: MacMillan, 1911.MATHGoogle Scholar
  36. 36.
    O. Ore, Linear equations in non-commutative fields,Ann. Math. 32 (1931), 463–77.CrossRefMathSciNetGoogle Scholar
  37. 37.
    K. Hunger Parshall and D. E. Rowe,The Emergence of the American Mathematical Research Community, 1876-1900: J. J. Sylvester, Felix Klein and E. H. Moore, Providence, RI: American Mathematical Society, 1994.MATHGoogle Scholar
  38. 38.
    J. M. Peirce, Determinants of quaternions,Bull. Amer. Math. Soc. 5 (1899), 335–337.CrossRefGoogle Scholar
  39. 39.
    P. Piccinni, Dieudonné determinant and invariant real polynomials on gl(n, H),Rend. Mat. (7)2 (1982), 31–45.MathSciNetGoogle Scholar
  40. 40.
    R. S. Pierce,Associative Algebras, New York: Springer-Verlag, 1982.CrossRefMATHGoogle Scholar
  41. 41.
    J. Radon, Lineare Scharen orthogonaler Matrizen,Abh. Math. Sem. Univ. Hamburg 1 (1922), 2–14.Google Scholar
  42. 42.
    A. R. Richardson, Hypercomplex determinants,Messenger of Math. 55 (1926), 145–152.Google Scholar
  43. 43.
    A. R. Richardson, Simultaneous linear equations over a division algebra,Proc. London Math. Soc. 28 (1928), 395–420.CrossRefMATHGoogle Scholar
  44. 44.
    E. Study, Zur Théorie der linearen Gleichungen,Acta Math. 42 (1920), 1–61.CrossRefMathSciNetGoogle Scholar
  45. 45.
    O. Teichmüller, Operatoren im Wachsschen Raum,J. Reine Angew. Math. 174 (1935), 73–124.MATHGoogle Scholar
  46. 46.
    C. L. Tong, Symplectic Groups, honours thesis, National Univ. of Singapore, 1991.Google Scholar
  47. 47.
    B. Leednert van der Waerden, Hamilton’s discovery of quaternions,Math. Mag. 49 (1976), 227–234.CrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    B. Leednert van der Waerden,A History of Algebra, New York: Springer-Verlag, 1985.CrossRefMATHGoogle Scholar
  49. 49.
    P. Van Praag, Sur les déterminants des matrices quaterniennes,Helv. Phys. Acta 62 (1989), 42–46.MathSciNetGoogle Scholar
  50. 50.
    P. Van Praag, Sur la norme réduite du déterminant de Dieudonné des matrices quaterniennes,J. Algebra 136 (1991), 265–274.CrossRefMATHMathSciNetGoogle Scholar
  51. 51.
    L. A. Wolf, Similarity of matrices in which the elements are real quaternions,Bull. Amer. Math. Soc. 42 (1936), 737–743.CrossRefMathSciNetGoogle Scholar
  52. 52.
    L. E. Zagorin, The determinants of matrices over a field (Russian),Proc. First Republican Conf. Math. Byelorussia, Izdat, Minsk: “Vysšaja Škola”, 1965, pp. 151–152.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 1996

Authors and Affiliations

  1. 1.Department of MathematicsNational University of SingaporeSingaporeRepublic of Singapore

Personalised recommendations