The Mathematical Intelligencer

, Volume 15, Issue 3, pp 12–24 | Cite as

A new look at euclid’s second proposition

  • Godfried Toussaint
Article

Conclusions

We mention in closing that even the 20th-centuryAlgorithm CO pales by comparison withAlgorithm Euclid from the point of view of robustness with respect to singularities. Consider, for example, the case where point C happens to lie at a location equidistant fromA andB.Algorithm Euclid executes in this case as easily as in any other because everything is well-defined. Without special flag-waving code, however,Algorithm CO could crash attempting to draw a circle with radius zero and then intersecting two circles, one of which has radius zero.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Aho, J. E. Hopcroft, and J. D. Ullman,The Design and Analysis of Computer Algorithms, Reading, MA: Addison-Wesley, 1974.MATHGoogle Scholar
  2. 2.
    A. Avron, Theorems on strong constructibility with a compass alone,J. Geometry 30 (1987), 28–35.CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    A. Avron, Construction problems—why and how?Int. J. Educ. Sci. Technol. 20 (No. 2) (1989), 273–287.CrossRefMathSciNetGoogle Scholar
  4. 4.
    A. Avron, On strict constructibility with a compass alone,J. Geometry, 38 (1990), 12–15.CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    I. Barrow,Euclide’s Elements, London: E. Redmayne, 1705.Google Scholar
  6. 6.
    P. Beckman,A History of Pi, New York: The Golem Press, 1971.Google Scholar
  7. 7.
    H. L. L. Busard,The First Latin Translation of Euclid’s Elements Commonly Ascribed to Adelard of Bath, Pontifical Institute of Medieval Studies, 1983.Google Scholar
  8. 8.
    H. L. L. Busard,The Latin Translation of the Arabic Version of Euclid’s ElementsCommonly Ascribed to Gerard de Cremona, Leiden: E. J. Brill, 1984.MATHGoogle Scholar
  9. 9.
    H. L. L. Busard,The Medieval Latin Translation of Euclid’s ElementsMade Directly From the Greek, Stuttgart: Franz Steiner Verlag Wiesbaden GMBH, 1987.MATHGoogle Scholar
  10. 10.
    C. Clavio,Euclidis Elementorum, Francofurti: Jonae Rosae, 1654.Google Scholar
  11. 11.
    R. Courant and H. Robbins,What is Mathematics? Oxford: Oxford University Press, 1981.Google Scholar
  12. 12.
    W. Dunham,Journey Through Genius: The Great Theorems of Mathematics, New York: Wiley, 1990.MATHGoogle Scholar
  13. 13.
    E. J. Dijksterhuis,The First Book of Euclid’s Elementa, Leiden: E. J. Brill, 1955.Google Scholar
  14. 14.
    H. S. Hall and F. H. Stevens,A Text-Book of Euclid’s Elements, London: Macmillan and Co., 1887.Google Scholar
  15. 15.
    Sir T. L. Heath,The Thirteen Books of Euclid’s Elements, Cambridge: Cambridge University Press, 1928.Google Scholar
  16. 16.
    I. L. Heiberg,Euclidis Elementa, Lipsiae: B. G. Teubneri, 1883.Google Scholar
  17. 17.
    R. Honsberger,Ingenuity in Mathematics, New York: Random House, 1970.Google Scholar
  18. 18.
    Ibn al-Haytham,On the Resolution of Doubts in Euclid’s Elements and Interpretation of Its Special Meanings, University of Istanbul, 1041 A.D., facsimile edition published by the Institute for the History of Arabic-Islamic Science at the Johann Wolfgang Goethe University, Frankfurt am Main, 1985.Google Scholar
  19. 19.
    G. J. Kayas,Euclide: Les Elements, Paris: Editions du Centre National de la Recherche Scientifique, 1978.MATHGoogle Scholar
  20. 20.
    F. Klein,Elementary Mathematics from an Advanced Standpoint: Geometry, New York: Dover, 1939.MATHGoogle Scholar
  21. 21.
    A. Kostovskii,Geometrical Constructions with Compasses Only, Moscow: Mir Publishers, 1986.Google Scholar
  22. 22.
    D. Lardner,The First Six Books of the Elements of Euclid, London: H. G. Bohn, 1861.Google Scholar
  23. 23.
    E. Lemoine,Géométrographie, Paris: C. Naud, 1902.MATHGoogle Scholar
  24. 24.
    L. Mascheroni,The Geometry of Compasses, Pavia: University of Pavia, 1797.Google Scholar
  25. 25.
    G. Mohr,The Danish Euclid, Amsterdam, 1672.Google Scholar
  26. 26.
    G. R. Morrow,Proclus: A Commentary on the First Book of Euclid’s Elements, Princeton, NJ: Princeton University Press, 1970.Google Scholar
  27. 27.
    D. Pedoe,Geometry and the Liberal Arts, New York: Penguin Books, 1976.Google Scholar
  28. 28.
    F. Peyrard,Les Oeuvres D’Euclide, Traduites Littéralement, Paris: C. F. Patris, 1819.Google Scholar
  29. 29.
    J. Playfair,Elements of Geometry; Containing the First Six Books of Euclid, Edinburgh: Bell & Bradfute, 1831.Google Scholar
  30. 30.
    F. P. Preparata and M. I. Shamos,Computational Geometry: An Introduction, New York: Springer-Verlag, 1985.CrossRefGoogle Scholar
  31. 31.
    B. Russell,The Autobiography of Bertrand Russell, Boston: Little, Brown & Co., 1951.Google Scholar
  32. 32.
    M. E. Stark and R. C. Archibald, Jacob Steiner’s geometrical constructions with a ruler given a fixed circle with its center (translated from the German 1833 edition),Scripta Mathematica, 14 (1948), 189–264.Google Scholar
  33. 33.
    J. H. Smith,Elements of Geometry, London: Rivingtons, 1879.Google Scholar
  34. 34.
    A. S. Smogorzhevskii,The Ruler in Geometrical Constructions, New York: Blaisdell, 1961.Google Scholar
  35. 35.
    H. M. Taylor,Euclid’s Elements of Geometry, Cambridge: Cambridge University Press, 1895.Google Scholar
  36. 36.
    I. Todhunter,The Elements of Euclid, Toronto: Copp, Clark & Co., 1876.Google Scholar
  37. 37.
    G. T. Toussaint, Computational geometric thinking as kinesthetic thinking, presented at Conference on Thinking, Harvard University, August 1984.Google Scholar
  38. 38.
    R. Williams,Elements of Euclid Explained and Demonstration in a New and Most Easy Method, London: Globemaker, 1703.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 1993

Authors and Affiliations

  • Godfried Toussaint
    • 1
  1. 1.School of Computer ScienceMcGill UniversityMontrealCanada

Personalised recommendations