The Mathematical Intelligencer

, Volume 4, Issue 3, pp 118–124 | Cite as

Gambling, probability and martingales

  • J. Laurie Snell


Fermat Fair Division Extended Game Walk Away Prize Money 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, C. L.: “Note on the Advantage of First Serve”, J. Combinatorial Theory (A) 23, (1977), 363CrossRefGoogle Scholar
  2. 2.
    Cardano, G.:The Book of Games of Chance, translated by S. Gould, inCardano, The Gambling Scholar by O. Ore, Princeton University Press, Princeton 1963Google Scholar
  3. 3.
    David, F. N.:Games, Gods and Gambling, Griffin, London 1962zbMATHGoogle Scholar
  4. 4.
    Doob, J. L.:Stochastic Processes, John Wiley and Sons, New York 1953zbMATHGoogle Scholar
  5. 5.
    Dostoyevsky, F.:The Gambler, Translated by Jessie Coulsin, Penguin, New York 1966Google Scholar
  6. 6.
    Kingston, I. C: “Comparison of Scoring Systems in Two- Sided Competitions”, J. Combinatorial Theory (A) 20, (1976), 357–362CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Kolmogorov, A. N.: “Three Approaches to the Quantitative Definition of Information”, Problems of Information Transmission 1, (1965), 1–7Google Scholar
  8. 8.
    Li, S. R.: “A Martingale Approach to the Study of Occurrence of Sequence Patterns in Repeated Experiments”, Annals of Probability 8, (1980), 1171–1176CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    DeMoivre, A.: The Doctrine of Chances (pages 51-54). Third Edition, London, 1756 (Reprinted by Chelsea, New York, 1967)Google Scholar
  10. 10.
    Ore, O.:Cardano, The Gambling Scholar, Princeton University Press, Princeton, 1953zbMATHGoogle Scholar
  11. 11.
    Ore, O.: “Pascal and the Invention of Probability Theory”, American Math. Monthly 67, (1960), 409–419CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Packel, E.:The Mathematics of Games and Gambling, published by the Mathematical Association of America, Washington, DC, 1981Google Scholar
  13. 13.
    Schnorr, C. P: “A Survey of the Theory of Random Sequences”, Part Three of the Proceedings of the Fifth International Congress of Logic, Methodology and Philosophy of Science, London, Ontario (Canada), 1975 (ed. by Butts, R. E. and Hintikka, J.), D. Reidel, Dordrecht and Boston, 1977Google Scholar
  14. 14.
    Thackeray, W. M.:The Newcomes; Memoirs of a Most Respectable Family, Chapter 28, Page 266, Edited by Arthur Pendennis Esqre. London, Bradbury and Evans, 1853Google Scholar
  15. 15.
    Thrope, E.:Beat the Dealer: A Winning Strategy for the Game of 21, Random House, New York, 1966Google Scholar
  16. 16.
    Ville, J.:Étude Critique de la Notion de Collectif, Gauthier- Villars, Paris, 1939Google Scholar
  17. 17.
    Von Mises, R.: “Grundlagen der Wahrscheinlichkeitstheorie”, Math. Zeitschr. 5, (1919)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 1982

Authors and Affiliations

  • J. Laurie Snell
    • 1
  1. 1.Department of MathematicsDartmouth CollegeHanoverU.S.A.

Personalised recommendations