The Mathematical Intelligencer

, Volume 4, Issue 3, pp 108–115 | Cite as

On newman’s quick way to the prime number theorem

  • J. Korevaar
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Chandrasekharan: Introduction to analytic number theory. Springer, Berlin, 1968CrossRefMATHGoogle Scholar
  2. 2.
    G. Doetsch: Theorie und Anwendung der Laplace-Transformation. Springer, Berlin, 1937CrossRefGoogle Scholar
  3. 3.
    H. M. Edwards: Riemann’s zeta function. Academic Press, New York, 1974MATHGoogle Scholar
  4. 4.
    P. Erdös: On a new method in elementary number theory. Proc. Nat. Acad. Sci. U. S. A. 35 (1949) 374–384CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    G.H. Hardy, E.M. Wright: An introduction to the theory of numbers. Oxford Univ. Press, London, 1954MATHGoogle Scholar
  6. 6.
    M. Heins: Complex function theory. Academic Press, New York, 1968MATHGoogle Scholar
  7. 7.
    A.E. Ingham: The distribution of prime numbers. Cambridge Univ. Press, 1932 reprinted by Hafner, New York 1971Google Scholar
  8. 8.
    A.E. Ingham: On Wiener’s method in Tauberian theorems. Proc. London Math. Soc. (2) 38 (1935) 458–480CrossRefMathSciNetGoogle Scholar
  9. 9.
    E. Landau: Handbuch der Lehre von der Verteilung der Primzahlen (2 volumes). Teubner, Leipzig, 1909; reprinted by Chelsea, New York, 1953Google Scholar
  10. 10.
    D. J. Newman: Simple analytic proof of the prime number theorem. American Math. Monthly 87 (1980) 693–696CrossRefMATHGoogle Scholar
  11. 11.
    A. Selberg: An elementary proof of the prime number theorem. Ann. of Math. (2)50 (1949) 305–313CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    E. C. Titchmarsh: The theory of functions. Oxford Univ. Press, London, 1939MATHGoogle Scholar
  13. 13.
    E. C. Titchmarsh: The theory of the Riemann zeta-function. Oxford Univ. Press, London, 1951MATHGoogle Scholar
  14. 14.
    N. Wiener: Tauberian fheorems.Ann. of Math. 33 (1932) 1–100Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 1982

Authors and Affiliations

  • J. Korevaar
    • 1
  1. 1.Mathematisch InstituutUniversiteit van AmsterdamAmsterdam

Personalised recommendations