The Mathematical Intelligencer

, Volume 13, Issue 1, pp 67–75 | Cite as

Abelian and nonabelian mathematics

  • I. R. Shafarevich
  • Smilka Zdravkovska


Vector Bundle Conjugacy Class Galois Group Prime Divisor Finite Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Lang,Algebra, Reading, MA: Addison-Wesley (1965). In a less algebraic spirit:zbMATHGoogle Scholar
  2. 2.
    H. Weyl,Gruppentheorie und Quantenmechanik, Leipzig: S. Hirzel (1928). The theory of abelian functions:zbMATHGoogle Scholar
  3. 3.
    H. Wehyl,Die Idee der Riemannischen Flächen, Leipzig: B. G. Teubner (1923). The algebraic aspect:Google Scholar
  4. 4.
    J. P. Serre,Groupes algétraiques et corps des classes, Paris: Hermann (1959). Class field theory:Google Scholar
  5. 5.
    J. W. S. Cassels and A. Fröhlich,Algebraic number theory, New York: Academic Press (1967). Vector bundles, fundamental work:zbMATHGoogle Scholar
  6. 6.
    A. Weil,Généralisation des fonctions abéliennes, collected papers, Vol. I, New York: Springer-Verlag (1979). A survey of the current state:Google Scholar
  7. 7.
    S. Ramanan, Vector bundles on algebraic curves,Proc. Int. Cong. Math., Vol. II, pp. 543–547. Helsinki (1978). Langland’s conjectures:Google Scholar
  8. 8.
    S. Gelbart, An elementary introduction to the Lang-lands program.Bull. Amer. Math. Soc. (2)10 (1984), 177–219. Extensions of algebraic number fields:CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    H. Koch,Galoissche Theorie der p-Erweiterungen, Berlin: Springer-Verlag (1970). Iterated integrals, a survey:CrossRefzbMATHGoogle Scholar
  10. 10.
    P. Carrier, Seminaire Bourbaki, Exp. No. 687,Astérisque, N161–162 (1989).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 1991

Authors and Affiliations

  • I. R. Shafarevich
    • 1
  • Smilka Zdravkovska
    • 2
  1. 1.Steklov Institute of MathematicsMoscowUSSR
  2. 2.Mathematical ReviewsAnn ArborUSA

Personalised recommendations