Advertisement

The Mathematical Intelligencer

, Volume 12, Issue 3, pp 54–57 | Cite as

A Centennial: Wilhelm Killing and the Exceptional Groups

  • Sigurdur Helgason
Article
  • 111 Downloads

Keywords

Jacobi Identity Cartan Subalgebra Cartan Matrix Exceptional Group Maximal Abelian Subalgebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1a.
    É. Cartan, Über die einfachen Transformationsgruppen,Leipzig Ber., 1893, pp. 395–420; reprint,Oeuvres complètes, Vol. I, no. 1, Paris: Gauthier-Villars (1952), 107–132. 1b.-, Sur la structure des groupes de transformations finis et continus, Thèse, Paris Nony, 1894; reprint,Oeuvres complètes, vol. I, no. 1, Paris: Gauthier Villars (1952), 137–287.Google Scholar
  2. 1c.
    —, Les groupes projectifs qui ne laissent invariants aucune multiplicité plane,Bull. Soc. Sci. Math. 41 (1913), 53–96.zbMATHMathSciNetGoogle Scholar
  3. 1d.
    —, Les groupes réels simples finis et continus,Ann. Sci. École Norm. Sup. 31 (1914), 263–355.MathSciNetGoogle Scholar
  4. 1e.
    —, Groupes simples clos et ouverts et géométrie riemannienne,J. Math. Pures Appl. (9) 8 (1929), 1–33.zbMATHMathSciNetGoogle Scholar
  5. 2a.
    C. Chevalley, Sur la classification des algebrès de Lie simples et de leurs représentations,C.R. Acad. Sci. Paris 227 (1948), 1136–1138.zbMATHMathSciNetGoogle Scholar
  6. 2b.
    —, Sur certains groupes simples,Tôhoku Math. J. 7 (1955), 14–66.CrossRefzbMATHMathSciNetGoogle Scholar
  7. 3.
    A. J. Coleman, The greatest mathematical paper of all time,The Mathematical Intelligencer 11, no. 3 (1989), 29–38.CrossRefzbMATHMathSciNetGoogle Scholar
  8. 4a.
    F. Engel, Sur un groupe simple à quatorze paramètres,C.R. Acad. Sci. Paris 116 (1893), 786–788.zbMATHGoogle Scholar
  9. 4b.
    —, Wilhelm Killing (obituary),Jber. Deutsch. Math. Verein. 39 (1930), 140–154.zbMATHGoogle Scholar
  10. 5.
    Harish-Chandra, On some applications of the universal enveloping algebra of a semisimple Lie algebra,Trans. Amer. Math. Soc. 70 (1951), 28–96.CrossRefzbMATHMathSciNetGoogle Scholar
  11. 6a.
    T. Hawkins, Wilhelm Killing and the structure of Lie algebras.Archive for Hist. Exact. Sci. 26 (1982), 126–192.CrossRefMathSciNetGoogle Scholar
  12. 6b.
    -, Élie Cartan and the prehistory of the representation theory of Lie algebras, preprint 1984.Google Scholar
  13. 7a.
    S. Helgason,Differential Geometry, Lie groups and Symmetric Spaces, New York: Academic Press (1978).zbMATHGoogle Scholar
  14. 7b.
    —, Invariant differential equations on homogeneous manifolds,Bull. Amer. Math. Soc. 83 (1977), 751–774.CrossRefzbMATHMathSciNetGoogle Scholar
  15. 7c.
    —, Some results in invariant theory,Bull. Amer. Math. Soc. 68 (1962), 367–371.CrossRefzbMATHMathSciNetGoogle Scholar
  16. 8.
    W. Killing, Die Zusammensetzung der stetigen endlichen Transformationsgruppen II,Math. Ann. 33 (1889), 1–48.CrossRefMathSciNetGoogle Scholar
  17. 9.
    E. E. Levi, Sulla struttura dei gruppi continui.Atti Accad. Sci. Torino 60 (1905), 551–565.Google Scholar
  18. 10.
    S. Lie and F. Engel,Theorie der Transformationsgruppen, 3 vols. Leipzig: Teubner (1888–1893).Google Scholar
  19. 11.
    R. Richardson, Compact real forms of a semisimple Lie algebra.J. Differential Geometry 2 (1968), 411–420.zbMATHMathSciNetGoogle Scholar
  20. 12.
    H. Weyl,The structure and representations of continuous groups, New Jersey: Inst. Adv. Study Princeton, Notes. (1935).Google Scholar
  21. 13.
    E. Witt, Spiegelungsgruppen und Aufzählung halbeinfacher Liescher Ringe,Abh. Math. Sem. Univ. Hamburg 14 (1941), 289–322.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1990

Authors and Affiliations

  • Sigurdur Helgason
    • 1
  1. 1.Department of MathematicsM.I.T.CambridgeUSA

Personalised recommendations