The Mathematical Intelligencer

, Volume 10, Issue 4, pp 59–67

Artin’s conjecture for primitive roots

  • M. Ram Murty
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Artin,Collected Papers, Reading, MA: Addison-Wesley (1965).CrossRefMATHGoogle Scholar
  2. 2.
    E. Bombieri, Le grand crible dans la théorie analytique des nombres,Astérisque 18 (1974).Google Scholar
  3. 3.
    E. Bombieri, J. B. Friedlander, and H. Iwaniec, Primes in arithmetic progressions to large moduli,Acta Math. 156 (1986), 203–251.CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    E. Fouvry and H. Iwaniec, Primes in arithmetic progressions,Acta Arith. 42 (1983), 197–218.MATHMathSciNetGoogle Scholar
  5. 5.
    E. Fouvry, Autour du théorème de Bombieri-Vinogradov,Acta Math. 152 (1984), 219–244.CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    R. Gupta and M. Ram Murty, A remark on Artin’s conjecture,Inventiones Math. 78 (1984), 127–130.CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    R. Gupta and M. Ram Murty, Primitive points on elliptic curves,Compositio Math. 58 (1986), 13–44.MATHMathSciNetGoogle Scholar
  8. 8.
    R. Gupta, V. Kumar Murty, and M. Ram Murty, The Euclidean algorithm for S integers,CNS Conference Proceedings, Vol. 7 (1985), 189–202.MathSciNetGoogle Scholar
  9. 9.
    D. R. Heath-Brown, Artin’s conjecture for primitive roots,Quart. J. Math. Oxford (2) 37 (1986), 27–38.CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    C. Hooley, On Artin’s conjecture,J. reine angew. Math. 226 (1967), 209–220.Google Scholar
  11. 11.
    H. Iwaniec, Rosser’s sieve,Acta Arith. 36 (1980), 171–202.MATHMathSciNetGoogle Scholar
  12. 12.
    H. Iwaniec, A new form of the error term in the linear sieve,Acta Arith. 37 (1980), 307–320.MATHMathSciNetGoogle Scholar
  13. 13.
    H. Iwaniec, Primes of the type (x,y)+A, where φ is a quadratic form,Acta Arith. 21 (1972), 203–224.MATHMathSciNetGoogle Scholar
  14. 14.
    S. Lang and H. Trotter, Primitive points on elliptic curves,Bulletin Amer. Math. Soc. 83 (1977), 289–292.CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    C. R. Matthews, Counting points modulop for some finitely generated subgroups of algebraic groups,Bulletin London Math. Soc. 14 (1982), 149–154.CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    M. Ram Murty and S. Srinivasan, Some remarks on Artin’s conjecture,Canadian Math. Bull. 30 (1987), 80–85.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1988

Authors and Affiliations

  • M. Ram Murty
    • 1
  1. 1.Department of MathematicsMcGill UniversityMontréalCanada

Personalised recommendations