The Mathematical Intelligencer

, Volume 10, Issue 4, pp 59–67 | Cite as

Artin’s conjecture for primitive roots

  • M. Ram Murty


Zeta Function Elliptic Curf Primitive Root Riemann Hypothesis Acta Arith 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Artin,Collected Papers, Reading, MA: Addison-Wesley (1965).CrossRefzbMATHGoogle Scholar
  2. 2.
    E. Bombieri, Le grand crible dans la théorie analytique des nombres,Astérisque 18 (1974).Google Scholar
  3. 3.
    E. Bombieri, J. B. Friedlander, and H. Iwaniec, Primes in arithmetic progressions to large moduli,Acta Math. 156 (1986), 203–251.CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    E. Fouvry and H. Iwaniec, Primes in arithmetic progressions,Acta Arith. 42 (1983), 197–218.zbMATHMathSciNetGoogle Scholar
  5. 5.
    E. Fouvry, Autour du théorème de Bombieri-Vinogradov,Acta Math. 152 (1984), 219–244.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    R. Gupta and M. Ram Murty, A remark on Artin’s conjecture,Inventiones Math. 78 (1984), 127–130.CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    R. Gupta and M. Ram Murty, Primitive points on elliptic curves,Compositio Math. 58 (1986), 13–44.zbMATHMathSciNetGoogle Scholar
  8. 8.
    R. Gupta, V. Kumar Murty, and M. Ram Murty, The Euclidean algorithm for S integers,CNS Conference Proceedings, Vol. 7 (1985), 189–202.MathSciNetGoogle Scholar
  9. 9.
    D. R. Heath-Brown, Artin’s conjecture for primitive roots,Quart. J. Math. Oxford (2) 37 (1986), 27–38.CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    C. Hooley, On Artin’s conjecture,J. reine angew. Math. 226 (1967), 209–220.Google Scholar
  11. 11.
    H. Iwaniec, Rosser’s sieve,Acta Arith. 36 (1980), 171–202.zbMATHMathSciNetGoogle Scholar
  12. 12.
    H. Iwaniec, A new form of the error term in the linear sieve,Acta Arith. 37 (1980), 307–320.zbMATHMathSciNetGoogle Scholar
  13. 13.
    H. Iwaniec, Primes of the type (x,y)+A, where φ is a quadratic form,Acta Arith. 21 (1972), 203–224.zbMATHMathSciNetGoogle Scholar
  14. 14.
    S. Lang and H. Trotter, Primitive points on elliptic curves,Bulletin Amer. Math. Soc. 83 (1977), 289–292.CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    C. R. Matthews, Counting points modulop for some finitely generated subgroups of algebraic groups,Bulletin London Math. Soc. 14 (1982), 149–154.CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    M. Ram Murty and S. Srinivasan, Some remarks on Artin’s conjecture,Canadian Math. Bull. 30 (1987), 80–85.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1988

Authors and Affiliations

  • M. Ram Murty
    • 1
  1. 1.Department of MathematicsMcGill UniversityMontréalCanada

Personalised recommendations