The Mathematical Intelligencer

, Volume 9, Issue 1, pp 53–57 | Cite as

The surfaces of Delaunay

  • James Eells


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Delaunay,Sur la surface de révolution dont la courbure moyenne est constante. J. Math, pures et appl. Sér. 1 (6) (1841), 309–320. With a note appended by M. Sturm.Google Scholar
  2. 2.
    J. Eells,On the surfaces of Delaunay and their Gauss maps. Proc. IV Int. Colloq. Diff. Geo. Santiago de Compostela (1978), 97–116.Google Scholar
  3. 3.
    J. Eells and L. Lemaire,A report on harmonic maps. Bull. London Math. Soc. 10 (1978), 1–68.CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    J. Eells and L. Lemaire,On the construction of harmonic and holomorphic maps between surfaces. Math. Ann. 252 (1980), 27–52.CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    A. R. Forsyth,Calculus of variations. Cambridge (1927).Google Scholar
  6. 6.
    E. A. Ruh and J. Vilms,The tension field of the Gauss map. Trans. Amer. Math. Soc. 149 (1970), 569–573.CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    R. T. Smith,Harmonic mappings of spheres University of Warwick Thesis (1972).Google Scholar
  8. 8.
    D’A. W. Thompson,Growth and form. Cambridge (1917).Google Scholar
  9. 9.
    C. Zwikker,The advanced geometry of plane curves and their applications. Dover (1963).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 1987

Authors and Affiliations

  • James Eells
    • 1
  1. 1.Mathematics InstituteUniversity of WarwickCoventryEngland

Personalised recommendations