The Mathematical Intelligencer

, Volume 4, Issue 2, pp 72–77 | Cite as

The van der waerden conjecture: two proofs in one year

  • J. H. van Lint
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. Alexandroff: Zur Theorie der gemischten Volumina von konvexen Körpern IV. Mat. Sbornik 3 (45) (1938), 227–251 (Russian; German summary)Google Scholar
  2. 2.
    G. P. Egoritsjev: Solution of van der Waerden’s permanent conjecture, preprint 13M of the Kirenski Institute of Physics, Krasnojarsk (1980), (Russian) translation in: Advances in Math.42 (1981), 299–305Google Scholar
  3. 3.
    D. I. Falikman: A proof of the van der Waerden conjecture on the permanent of a doubly stochastic matrix. Matematičeski Zametki29 (1981), 931–938 (Russian)MathSciNetGoogle Scholar
  4. 4.
    Werner Fenchel: Inégalités quadratiques entre les volumes mixtes des corps convexes. Comptes Rendus, Acad. Sci, Paris, 203 (1936), 647–650Google Scholar
  5. 5.
    D. E. Knuth: A permanent inequality (to appear in Am. Math. Monthly88 (1981), 731–740CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    J. H.van Lint: Notes on Egoritsjev’s Proof of the van der Waerden Conjecture. Linear Algebra and its Applications39 (1981), 1–8CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    D. London: Some notes on the van der Waerden Conjecture. Linear Algebra and its Applications4 (1971), 155–160CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Marvin Marcus, Morris Newman: On the minimum of the permanent of a doubly stochastic matrix. Duke Math J.26 (1959), 61–72CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    H. Mine: Permanents, Encyclopedia of Mathematics and its Applications, vol. 6. Addison-Wesley, Reading, Mass. (1978)Google Scholar
  10. 10.
    R. P. Stanley: Two combinatorial applications of the Alekxandrov-Fenchel inequalities. J. Combinatorial Theory (A)31 (1981), 56–65CrossRefMATHGoogle Scholar
  11. 11.
    B. L. van der Waerden: Aufgabe 45. Jahresber. d. D.M.V.35 (1926), 117Google Scholar
  12. 12.
    B. L. van der Waerden: Ein Satz iiber Klasseneinteilungen von endlichen Mengen. Abh. a. d. Math. Seminar Hamburg5 (1927), 185–188CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 1982

Authors and Affiliations

  • J. H. van Lint
    • 1
  1. 1.Technische Hogeschool EindhovenEindhovenThe Netherlands

Personalised recommendations